Buradasınız

A Complete Classification of Liénard Equation

Journal Name:

Publication Year:

Abstract (2. Language): 
We consider scalar Liénard equations ¨x(t) = f (x(t))˙x(t)+ g(x(t)), x(t) 2R (1) and the diffeomorphisms ' : R2!R2 in the form '(x, t) = ( (x), a.t + (x)) (2) where the derivative of the function is non zero and where the real number a is non zero. The aim result of this paper is to study the symmetries in the form given by (2) for the equation (1). 2010 Mathematics Subject Classifications: 47A63, 26A51, 45A90
FULL TEXT (PDF): 
126-136

REFERENCES

References: 

[1] I.M. Anderson, N. Kamran, and P.J. Olver. Internal, external, and generalized symmetries.
Adv. Math. 100 (1), 53-100 (1993).
[2] G.W. Bluman and S. Kumei. Symmetries and differential equations. Vol. 81 of Applied
Mathematical Sciences Springer-Verlag, New York (1989).
[3] F. Boulier, D. Lazard, F. Ollivier, and M. Petitot. Representation for the radical of a finitely
generated differential ideal. In: proceedings of ISSACâ˘A´Z95. Montréal, Canada, pp.
158-166 (1995).
[4] R. Fitzhugh. Impulses and physiological in theoretical models of nerve membranes. Biophysics
Journal 1, 445-466 (1961).
[5] H. Giacomini and S. Neukirch. Number of limit cycles of the Lieénard equation. Physical
Review E, 56(4), (1997).
[6] G. Joanna. Lie Symmetry Methods in Finance - An Example of the Bond Pricing Equation.
Proceedings of the World Congress on Engineering Vol II, London, U.K (2008).
[7] E.R. Kolchin. Differential algebra and algebraic groups. Academic Press, New York, Pure
and Applied Mathematics, 54 (1973).
[8] J. Nagumo, S. Arimoto, and S. Yoshizawa. An active pulse transmission line simulating
nerve axon. In: Proceedings of the Institute of Radio Engineers. Vol. 50. pp. 2061-2070
(1962).

Thank you for copying data from http://www.arastirmax.com