Buradasınız

Tip 2 Diyabetik Hastalarda Tedavi Öncesi ve Tedavi Sonrası Oksidan ve Antioksidan Durum

Oxidant and Antioxidant Status in Type 2 Diabetic Patients Before and After Therapy

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Several studies reported that diabetic vascular complications and lipid peroxidation occur due to high blood glucose levels. Aim of the present study was to evaluate antioxidant status in type 2 diabetics (DM) before and after therapy. Levels of serum fasting glucose, malondialdehyde (MDA), lycopene, antioxidant vitamins (A E> and C), triglycerid, total cholesterol, HDL- cholesterol, LDL- cholesterol, as well as eritrocyte HbAlC levels along with enzyme acitivity levels of superoxide dismutase (SOD), catalase (CAT) ve glutathion peroksidase (GSH-Px) were determined in thirty type 2 diabetic patients (19 man, 11 woman). After treatment period, reduction in blood glucose levels was accompanied with significant reduction in levels of HbAlC, MDA and triglycerid whereas there was significant increase in levels of CAT, SOD, vitamin A ve vitamin E. There was no statistically significant changes in levels of GSH-Px, vitamin C, lycopene, total cholesterol, HDL- cholesterol, LDL- cholesterol. Present results indicate that oxidative status developed due to hyperglycemia can be normalized by treatment. Treatment of diabetics who are educated by their attending doctors regarding their sickness will be much easier, this will affect the quality of diabetics positively, as a result financial burden on individuals and country will be minimized. ©2005, Fırat Üniversitesi, Tıp Fakültesi
Abstract (Original Language): 
Kan glukoz düzeyinin yüksek seyretmesine bağlı olarak diabetik vaskülar komplikasyonlar ve lipid peroksidasyonunun meydana geldiği çok sayıda çalışmada rapor edilmektedir. Bu çalışmanın amacı; tip 2 diabetiklerde (DM) tedavi öncesi ve tedavi sonrası oksidatif durumu gözlemektir. 30 tip 2 diabetik hastadan (19 erkek ve 11 kadın) sağlanan örneklerde serum açlık kan glukoz, malondialdehit (MDA), likopen, antioksidan vitaminler (A, E ve C), trigliserit, total kolesterol, HDL-kolesterol, LDL-kolesterol düzeyleri, eritrositte HbAlC ile süperoksit dismutaz (SOD), katalaz (CAT) ve glutatyon peroksidaz (GSH-Px) enzim aktiviteleri tespit edildi. Tedavi sonrası dönemde kan glukoz düzeyindeki düşüşüne parelel olarak HbAlC, MDA ve trigliserit düzeylerinde anlamlı bir azalma gözlenirken; CAT, SOD, vitamin Ave vitamin E düzeylerinde anlamlı bir artış görüldü. GSH-Px, vitamin C, likopen , total kolesterol, LDL-kolesterol ve HDL-kolesterol düzeylerinde önemli bir değişiklik saptanmadı. Bu sonuçlar göstermektedir ki tip 2 diabetik kişilerde, hiperglisemiye bağlı olarak gelişen oksidatif durum, diyabetin tedavi edilmesi ile normale dönebilmektedir. Hastalıkları konusunda ilgili hekimler tarafından eğitilmiş diabetiklerin tedavileri daha kolay olacak, bu durumun da diabetiklerin yaşam kaliteleri olumlu etkileyerek hem kişiye hem de ülkeye getireceği mali külfeti azaltacaktır. ©2005, Fırat Üniversitesi, Tıp Fakültesi

REFERENCES

References: 

1. Hasselbaink DM, Glatz JFC, Luiken JJFP, Roemen TFfM, Vusse GJV. Ketone bodies disturb fatty acid handling in isolated cardiomyocytes derived from control and diabetic rats. Biochem J 2003; 371: 753-760.
2. Abou-Seif MA Youssef AA. Evaluation of some biochemical chenges in diabetic patients. Clin Chim Acta 2004; 346: 161-170
3.
Cengi
z M, Cengiz S. Tip 2 diyabetli hastalarda C vitamini uygulamasının eritrosit glutatyon ve HbAlC düzeyleri üzerine etkisi. Cerrahpaşa Tıp Dergisi 2000; 31: 211-215
4. Sacks DB. Carbohydrates. In: Burtis CA, Ashwood ER, Editors. Tietz Textbook of Clinical Chemistry, 2nd ed. Philadelphia. Saunders 1994; 928-1001
5.
Akkuş
, İ, Serbest radikaller ve fizyopatolojik etkileri, Mimoza yayınları, Konya, (1995).
6. Cheesman KH, Slater TF. An introduction to free radical biochemistry. Br Med Bull 1993: 49:481-493
7. Langenstroer P, Pıeper GM. Regulation of spontaneous EDRF rebase in diabetic rat aorta by oxygen free radical. Am J Physiol 1992; 263: 257-265
8. Ceriello A, Giugliano D, Quatraro A, Dello Russo P, Torello R. A preliminary note on inhibiting effect of *-tocopherol on protein glycation. DiabetMetab 1988; 14: 40-52
9.
Akgü
l E, İlhan N, İlhan N, Halifeoğlu İ. Tip II Diabetes mellitusta lipid peroksidasyonu ve eritrosit antioksidan enzim aktiviteleri. Türk Biyokimya Dergisi 1999; 3: 28-33
10. Davidson
VL
, Sittman DB. Biyokimya. Güner G (Çeviren). 1.Baskı, İstanbul: Nobel, 2000
11.
Akgül
, E. Tip II diabetes mellituslu hastalarda oksidan ve antioksidan mekanizmaların incelenmesi. Uzmanlık Tezi. Elazığ: Fırat Üniversitesi Tıp Fakültesi Biyokimya ve Klinik Biyokimya Anabilim Dalı, 1996
12. Wolf SP, Dean RT. Glucose autoxidation and protein modification: The potential role of autoxidative glycosylation in diabetes Biochem J 1987; 245: 243-250
13. Granado F, Olmedilla B, Gil-Martinez E, Blanco I, Milan I, Rojas-Hidalgo E. Carotenoids, retinol and tocopherols in patients with insulin-dependent diabetes mellitus and their immediate relatives. Clin Sci (Lond) 1998; 94: 189-95
14. Rao VA Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 2000; 19: 563-569
15. Diplock AT. Antioxdant nutrients and disease prevention: An Overview. Am J Clin Nutr 1991; 53: 1895-1935
16. Fairbanks VF, Klee GG. Biochemical Aspects of Hematology. In: Burtis CA Ashwood ER (editors). Tietz Textbook of Clinical Chemistry. Second edition, Philadephia: W. B. Saunders Company, 1994: 1974-2072
17. Karatas F, Karatepe M, Baysar A. Determination of free malondialdehyde in human serum by high performance liquid chromatography, Anal Biochem 2002; 311: 76-79.
18. Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 1967; 70: 158.
19. Aebi H. Catalase in vitro assay methods. Methods Enzymol 1984; 105: 121-126.
20. Çetinkaya N, Özcan, H. Investigation of seasonal variations in cow serum Retinol and •-Carotene by high performance liquid chromatographic method comp. Biochem. Physiol 1991; 100: 1003-1008.
21. Catignani GL, Bieri JG. Simultaneous determination of retinol and alpha-tocopherol in serum or plasma by liquid chromatography. Clin Chem 1983; 29: 708-712.
22. Miller KW, Lorr NA, Yang CS. Simultaneous determination of plasma retinol, alpha-tocopherol, lycopene, alpha-carotene, and beta-carotene by high-performance liquid chromatography. Anal Biochem 1984;138:340-345.
23. Tavazzi B, Lazzarino G, Di Pierro D, Giardina B. Malondialdehyde production and ascorbate decrease are associated to the reperfusion of the isolated postischemic rat heart. Free Radic Biol Med 1992; 75-78.
24. Cerhata D, Bauerova A, Ginter E. Determination of ascorbic acid in blood serum using high-performance liquid chromatography and its correlation with spectrophotometric (colorimetric) determination. Ceska Slov Farm 1994 Jul; 43: 166-168.
25. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes 1999; 48: 1-9.
26. Aydin A, Orhan H, Sayal A, Ozata M, Sahin G, Isimer A. Oxidative stress and nitric oxide related parameters in type II diabetes mellitus: effects of glycemic control. Clin Biochem 2001 Feb; 34: 65-70.
27. West IC. Radicals and oxidative stress in diabetes. Radicals. Diabet Med 2000; 17: 171-80.
28. Bendayan M. Immunocytochemical detection of advanced glycated end products in rat renal tissue as a function of age and diabetes. Kidney Int 1998; 54: 438-447.
29. Lopes-Virella MF, Virella G, Orchard TJ, Koskinen S, Evans RW, Becker DJ, Forrest KY. Antibodies to oxidized LDL and LDL-containing immune complexes as risk factors for coronary
artery disease in diabetes mellitus. Clin Immunol 1999 Feb; 90: 165-172
30. Faure P, Corticelli P, Richard MJ, Arnaud J, Coudray C, Halimi S, Favier A, Roussel AM. Lipid peroxidation and trace element status in diabetic ketotic patients: influence of insulin therapy. Clin Chem 1993; 39: 789-793
31. Vantyghem MC, Balduyck M, Zerimech F, Martin A, Douillard C, Bans S, Degand PM, Lefebvre J. Oxidative markers in diabetic ketoacidosis. J Endocrinol Invest 2000; 23: 732-6
32. Seghrouchni I, Drai J, Bannier E, Riviere J, Calmard P, Garcia I, Orgiazzi J, Revol A. Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin Chim Acta. 2002; 321: 89-96
33. Sekeroglu MR, Sahin H, Dülger H, Algun E. The effect of dietary treatment on erythrocyte lipid peroxidation, superoxide dismutase, glutathione peroxidase, and serum lipid peroxidation in patients with type 2 diabetes mellitus. Clin Biochem 2000; 33: 669-74
34. Hughes DA, Wright AT, Finglas PM, Polley AC, Bailey AL, Astley SB, Southon S. Effects of lycopene and lutein supplementation on the expression of functionally associated surface molecules on blood monocytes from healthy male nonsmokers. JInfectDis. 2000; 182 Suppl l:Sll-5
35. Clinton SK. Lycopene: chemistry, biology, and implications for human health and disease. Nutr Rev 1998; 5: 35-51
36. Di Mascio P, Kaiser S, Sies H. Lycopene as the most efficient biological carotenoid singlet oxygen quencher. Arch Biochem Biophys. 1989;274:532-53
37. NJ, Sampson J, Candeias LP, Bramley PM, Rice-Evans CA. Antioxidant activities of carotenes and xanthophylls. FEBS Lett 1996;384:240-242
38. Agarwal S, Rao AV. Tomato lycopene and low density lipoprotein oxidation: a human dietary intervention study. Lipids 1998;33:981-984.
39. Rao AV, Agarwal S.Bioavailability and in vivo antioxidant properties of lycopene from tomato pruducts and their possible role in the prevention of cancer. Nutr Cancer 1998; 31: 199-203.
40. Pool-Zobel BL, Bub A, Muller H, Wollowski I, Rechkemmer G. Consumption of vegetables reduces genetic damage in humans: first result of a humman intervention trial with carotenoid-rich foods. Carcinogenesis 1997; 18: 1847-1850.

Thank you for copying data from http://www.arastirmax.com