Buradasınız

Mikroorganizmaların Kanser Tedavisinde Kullanımı

Use of Microorganisms in Cancer Therapy

Journal Name:

Publication Year:

Abstract (2. Language): 
In the last decade the progress in biochemistry, molecular biology, and bacteriology caused a great deal of attention to be paid for the use bacteria in cancer therapy. Some applications in this area are the use of bacteria as sensitising agents for chemotherapy, as vectors for gene therapy and as delivery agents for anticancer drugs. In this field, especially Escherichia coli genes and enzymes have been the targets for pro-drug approaches to cancer therapy where inert pro-drugs can be converted to highly active species in vivo. Moreover, IL-4 fused with Pseudomonas exotoxin has been applied directly into malignant brain tumours and binds with high affinity to IL-4 receptors not present on normal brain cells an approach by which major part of the tumour is destroyed without harming the normal brain tissue. This review is focused on the anticancer agents of microorganism origin that are used to treat some cancer types. ©2004, Fırat Üniversitesi, Tıp Fakültesi
Abstract (Original Language): 
Son on yılda biyokimya, moleküler biyoloji ve bakteriyolojideki ilerlemeler, bakterilerin antikanser ajan olarak kullanımının yanı sıra, antikanser ilaçların verilmesinde kemoterapiye duyarlı ajan ve gen tedavisi için vektör olarak kullanımına kadar kullanışlı bir çok yönlerini ortaya koymuştur. Bu alanda özellikle Escherichia coli genleri ve enzimleri, kansere karşı vücut dışında etkisiz olan fakat vücut içinde oldukça aktif türlerine dönüşebilen ön-ilaç uygulamalarında yer almaktadır. Ayrıca Pseudomonas ekzotoksinlerine konjuge edilmiş IL-4, direkt olarak malignant beyin tümörlerine uygulanmış ve normal beyin hücreleri haricindeki hücrelerin IL-4 reseptörlerine yüksek afinite ile bağlandığı görülmüş ve böylece normal beyin dokusuna zarar vermeden tümörün büyük bir kısmının tahrip edildiği saptanmıştır. Bu derleme, bazı kanser tiplerinin tedavisi için kullanılan bakteriyel orijinli antikanser ajanlar üzerine odaklanmıştır. ©2004, Fırat Üniversitesi, Tıp Fakültesi
30-34

REFERENCES

References: 

1. Heppner F, Mose JR. The liquefaction (oncolysis) of malignant gliomas by a non pathogenic Clostridium. Acta Neurochir 1978;
42: 123-125.
2. Cao Y, Hamada T, Matsui T, Date T, Iwabuchi K. Hepatitis C virus core protein interacts with p53-binding protein, 53BP2/Bbp/ASPP2, and inhibits p53-mediated apoptosis. Biochem Biophys Res Commun. 2004;315:788-795.
3. Trochon-Joseph V, Martel-Renoir D, Mir LM ve ark. Evidence of antiangiogenic and antimetastatic activities of the recombinant disintegrin domain of metargidin. Cancer Res 2004; 64:2062-2069.
4. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/prodrug systems in a human colorectal carcinoma cell line. Cancer Res. 1995; 55: 4808-4812.
5. Rogulski KR, Kim JH, Kim SH, Freytag SO. Glioma cells
transduced with an Escherichia coli CD/HSV-1 TK fusion gene exhibit enhanced metabolic suicide and radiosensitivity. Hum
Gene Ther 1997; 8: 73-85.
6. Parker WB, King SA, Allan PW, et al. In vivo gene therapy of cancer with E. coli purine nucleoside phosphorylase. Hum Gene Ther 1997; 8: 1637-1644.
7. Kerr DJ, Young LS, Searle PF, McNeish IA. Gene directed enzyme prodrug therapy for cancer. Adv Drug Deliv Rev 1997;
26: 173-184.
8. Tamiya T, Ono Y, Wei MX, Mroz PJ, Moolten FL, Chiocca EA. Escherichia coli gpt gene sensitizes rat glioma cells to killing by 6-thioxanthine or 6-thioguanine. Cancer Gene Ther 1996; 3: 155¬162.
9. Lemmon MJ, Van Zijl P, Fox ME, Mauchline ML, Giaccia AJ, Minton NP, Brown JM. Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene
Ther 1997; 4: 791-796.
10. Hueck CJ. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 1998;
62: 379-433.
11. Bleves S, Cornelis GR. How to survive in the host: the Yersinia lesson. Microbes Infect 2000; 2: 1451-1460.
12. Gariepy J. The use of Shiga-like toxin 1 in cancer therapy. Crit Rev Oncol Hematol. 2001;39:99-106
13. Galan JE, Collmer A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 1999; 284:
1322-1328.
14. Boyd AP, Grosdent N, Totemeyer S, ve ark. Yersinia enterocolitica can deliver Yop proteins into a wide range of cell
15.types: development of a delivery system for heterologous proteins. Eur J Cell Biol 2000; 79: 659-671.
16. Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 1997; 57: 4537-4544.
17. Arab S, Rutka J, Lingwood C. Verotoxin induces apoptosis and the complete, rapid, long-term elimination of human astrocytoma xenografts in nude mice. Oncol Res 1999; 11: 33-39.
18. Lingwood CA. Verotoxin/globotriosil ceramide recognation: angiopathy, angiogenesis and antineoplasia. Biosci Rep 1999; 19:
345-354.
19. LaCasse EC, Saleh MT, Patterson B, Minden MD, Gariepy J.
Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood. 1996; 88: 1561¬1567.
20. LaCasse EC, Bray MR, Patterson B, et al. Shiga-like toxin-1
receptor on human breast cancer, lymphoma, and myeloma and absence from CD34 (+) hematopoietic stem cells: implications for ex vivo tumor purging and autologous stem cell transplantation.
Blood. 1999; 94: 2901-2910.
21. Arbus GS, Grisaru S, Segal O. Verotoxin targets lymphoma infiltrates of patients with post-transplant lymphoproliferative disease. Leuk Res 2000; 24: 857-864.
22. Noakes KL, Teisserenc HT, Lord JM, Dunbar PR, Cerundolo V,
Roberts LM. Exploiting retrograde transport of Shiga-like toxin 1 for the delivery of exogenous antigens into the MHC class I presentation pathway. FEBS Lett 1999; 453: 95-99.
23. Pastan I, Kreitman RJ. Immunotoxins for targeted cancer therapy. Adv Drug Deliv Rev 1998; 31: 53-88.
24. Laske DW, Youle RJ, Oldfield EH. Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 1997; 3: 1362-1368.
25. Puri RK. Development of a recombinant interleukin-4-Pseudomonas exotoxin for therapy of glioblastoma. Toxicol Pathol
1999; 27: 53-57.
26. Goldberg MR, Heimbrook DC, Russo P, et al. Phase I clinical study of the recombinant oncotoxin TP40 in superficial bladder cancer. Clin Cancer Res 1995; 1: 57-61.
27. Zhang M, Zhao X, Li H, Lu S. Cloning and expression of the gene coding for IL-2 (60)-PE40, a molecular targeted protein. Chin Med Sci J 1995; 10: 136-140.
28. Kreitman RJ, Pastan I Targeted toxin hybrid theraphy. In: Novel therapeutics from modern biotechnology. Oxender DL, Post I.E.,
Springer, 1999.
29. Pawelek JM, Low KB, Bermudes D.Tumor-targeted Salmonella. Highly selective delivery vectors. Adv Exp Med Biol 2000; 465:
57-63.
33
Fırat Tıp
Dergis
i 2004;9(2): 30-34
30. Low KB, Ittensohn M, Le T, et al. Lipid A mutant Salmonella with suppressed virulence and TNF alpha induction retain tumor-
targeting in vivo. Nat Biotechnol 1999; 17: 37-41.
31. Platt J, Sodi S, Kelley M, Rockwell S, Bermudes D, Low KB,
Pawelek J. Antitumour effects of genetically engineered Salmonella in combination with radiation. Eur J Cancer 2000; 36:
2397-2402.
32. Geckil H, Gencer S. Production of L-asparaginase in Enterobacter aerogenes expressing Vitreoscilla hemoglobin for efficient oxygen
uptake. Appl Microbiol Biot 2004; 63:691-697.
Aydın
v
e Ark.
33. Ettinger LJ, Ettinger AG, Avramis VI, Gaynon PS. Acute lymphoblastic leukaemia: a guide to asparaginase and pegaspargase therapy. BioDrugs 1997; 7:30-39.
34. Stecher AL, de Deus PM, Polikarpov I, Abrahâo-Neto J. Stability of L-asparaginase: an enzyme used in leukemia treatment. Pharm Acta Helv 1999; 74:1-9.
35. Müller HJ, Boos J. Use of L-asparaginase in childhood ALL. Crit
Rev Oncol Hemat 1998; 28:97-113.
36. Kusakabe H, Kodama K, Kuninaka A, and Yoshino H. A new antitumor enzyme, L-lysine a-oxidase from Trichoderma viride. J
Biol Chem 1980; 255:976-981.

Thank you for copying data from http://www.arastirmax.com