Buradasınız

Dopamin ve Ürik Asitin Birinin Varlığında Diğerinin Kare Dalga Voltametrisi ile Tayini

The Determination of Dopamine and Uric Acid with the Presence of Other Using Square Wave Voltammetry

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Initially the electrochemical behavior of dopamine (DA) and uric acid (UA) in different supporting electrolytes was investigated. It was found that the most suitable supporting electrolytes were pH 2.5 H2SO 4 and pH 7.2 phosphate buffer. The analysis of DA and UA in acidic medium was carried out by the use of their oxidation peaks observed at +0.480 V and +0.620 V, respectively. The analysis of the phosphate buffer medium were carried out by the use of the oxidation peaks of DA and UA appeared at +0.140 V and +0.270 V, respectively. The studies carried out with different [DA] / [UA] ratios gave acceptable results for both media. The synthetic sample was analyzed. The error was -0.41 % for DA and 0.27 % for UA in acidic media and -0.61 % for DA and -0.14 % for UA in basic media. The limits of detection (LOD) were found as 2.16 × 10 -8 M and 4.14 × 10 -8 M in acidic media, 2.28 × 10 -8 M and 2.13 × 10 -8 M in basic media for DA and UA, respectively.
Abstract (Original Language): 
Bu çalışmada çeşitli destek elektrolit ortamlarında DA ve ÜA’ nın yükseltgenme davranışları incelenmiş, pH 2,5 H 2SO 4 ve pH 7,2 fosfat tamponunun uygun olduğuna karar verilmiştir. pH 2,5 H2SO 4 ortamında DA ve ÜA’ nın sırasıyla +0,480 V, +0,620 V’ da ki, fosfat tamponunda da sırasıyla +0,140 V, +0,270 V’ da ki yükseltgenme pikleri kullanılmıştır. Her iki ortamda farklı [DA] / [ÜA] oranları çalışılmıştır. Sentetik numune için, pH 2,5 H2SO 4 ortamında DA ve ÜA için % hata sırasıyla -0,41 ve 0,27, pH 7,2 fosfat tamponu ortamında aynı numune için % hata sırasıyla -0,61 ve -0,14 olarak bulunmuştur. pH 2,5 H 2SO 4 ortamında DA ve ÜA için gözlenebilme sınırı (LOD) sırasıyla 2,16 × 10 -8 M ve 4,14 × 10 -8 M, tayin sınırı (LOQ) ise 6,48 × 10 -8 M ve 1,24 × 10 -7 M olarak bulunmuştur. pH 7,2 fosfat tamponu ortamında DA ve ÜA için gözlenebilme sınırı (LOD) sırasıyla 2,28 × 10 -8 M ve 2,13 × 10 -8 M, tayin sınırı (LOQ) 6,84 × 10 -8 M ve 6,39 × 10 -8 M olarak bulunmuştur. Bu yönteme çeşitli anyon ve katyonların girişim etkileri incelenmiştir
775-791

REFERENCES

References: 

Ardakani, M. M., Akrami, Z., Kazemian, H., Zare, H.R. (2006). Electrocatalytic
characteristics of uric acid oxidation at graphite–zeolite-modified electrode doped
with iron (III). J. Electroanal. Chem., 586, 31–38.
Ardakani, M. M., Beitollahi, H., Ganjipour, B., Naeimi, H., Nejati, M. (2008).
Electrochemical and catalytic investigation of dopamine and uric acid by modified
carbon nanotube paste electrode. Bioelecterochemistry, 75, 1-8.
Bishop, E. and Hussein, W. (1984). Anodic voltammetry of dopamine, noradrenaline
and related compounds at rotating disc electrodes of platinum and gold. Analyst,
109, 627-632.
Bravo, R., Hsueh, Ch., Jaramillo, A., Brajter-Toth, A. (1998). Possibilities and
limitations in miniaturized sensor design for uric acid. Analyst, 123, 1625-1630.
Cao, X., Luo, L., Ding, Y., Yu, D., Gao, Y., Meng, Y. (2009). Simultaneous
determination of dopamine and uric acid on nafion/sodium
dodecylbenzenesulfonate composite film modified glassy carbon electrode. J.
Appl. Electrochem., 39, 1603–1608.
Deletioğlu, D., Hasdemir, E., and Solak, A. O. (2010). Simultaneous Determination of
dopamine and uric acid in the presence of ascorbic acid at the indole-3-
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 31, Sayı 3 (2011) 775-791 788
carboxaldehyde modified glassy carbon electrode. Current Analytical Chemistry,
6(3), 203-208.
Dilena, B.A., Peake, M.J., Pardue, H.L., Skoug, J.W. (1986). Direct ultraviolet method
for enzymatic determination of uric acid, with equilibrium and kinetic data -processing options. Clin. Chem., 32, 486-491.
Dutt, J.S.N., Cardosi, M.F., Livingstone, C., Davis, J. (2005). Diagnostic implications
of uric acid in electroanalytical measurements. Electroanalysis, 17, 1233-1243.
Gilmartin, M.A.T., Hart, J.P. (1992). Voltammetric and amperometric behaviour of uric
acid at bare and surface-modified screen-printed electrodes: studies towards
disposable uric acid sensor. Analyst, 117, 1299–1303.
Gilmartin, M.A., Hart, J.P. (1994). Amperometric biosensor for uric acid based on a
chemically modified screen-printed carbon electrode coated with cellulose acetate
and uricase. Analyst, 119, 833-840.
Guan, Y., Wu, T., Ye, J. (2005). Determination of uric acid and p -aminohippuric acid
in human saliva and urine using capillary electrophoresis with electrochemical
detection: Potential application in fast diagnosis of renal disease. J. Chromatogr.
B, 821, 229-234.
Hawley, M.D., Tatawawadi, S.V., Piekarski, S., and Adams, R. N. (1967).
Electrochemical studies of the oxidation pathways of catecholamines. J. Am.
Chem. Soc., 89, 447- 450.
Huang, X., Li, Y., Wang, P., Wang, L. (2008). Sensitive Determination of Dopamine
and Uric Acid by the Use of a Glassy Carbon Electrode Modified with Poly(3-methylthiophene)/Gold Nanoparticle Composites. Anal. Sci., 24, 1563-1568.
Lane, R.F., Blaha, C.D. (1990). Detection of catecholamines in brain tissue: surface-modified electrodes enabling in vivo investigations of dopamine function.
Longmuir, 6, 56–65.
Lee, H.L., Chen, S.C. (2004). Microchip capillary electrophoresis with electrochemical
detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and
ascorbic acid in urine and serum. Talanta, 64, 750-754.
Liu, C., Lu, G., Jiang, L., Jiang, L., Zhou, X. (2006). Study on the Electrochemical
Behavior of Dopamine and Uric Acid at a 2-Amino-5-mercapto-[1,3,4] Triazole
Self-Assembled Monolayers Electrode. Electroanalysis, 18, 291 – 297.
Liu, A., Honma, I., Zhou, H. (2007). Simultaneous voltammetric detection of dopamine
and uric acid at their physiological level in the presence of ascorbic acid using
poly(acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon
electrode. Biosensors and Bioelectronics, 23, 74–80.
Lykkesfeldt, J. (2000). Determination of ascorbic acid and dehydroascorbic acid in
biological samples by high-performance liquid chromatography using subtraction
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 31, Sayı 3 (2011) 775-791 789
methods: reliable reduction with tris[2-carboxyethyl] phosphine hydrochloride.
Anal. Biochem., 282, 89-93.
Miland, E., Ordieres, A.J.M., Blanco, P.T., Smyth, M.R., Fagain, C.O. (1996). Poly(o-aminophenol)-modified bienzyme carbon paste electrode for the detection of uric
acid. Talanta, 43, 785-796.
Pachla, L.A., Reynolds, L.D., Wright, S., Kissinger, P.T. (1987). Analytical methods for
measuring uric acid in biological samples and food products. J. Assoc. Offic. Anal.
Chem., 70, 1-14.
Perello, J., Sanchis, P., Grases, F. (2005). Determination of uric acid in urine, saliva and
calcium oxalate renal calculi by high-performance liquid chromatography/mass
spectrometry. J. Chromatogr. B 824, 175-180.
Pileggi, V.J., Wybenga, D.R., Digiorgi, J. (1972). A one-tube serum uric acid method
using phosphotungstic acid as protein precipitant and color reagent. Clin. Chim.
Acta, 37, 141-149.
Popa, H., Kubota, Y., Donald, A. T., Fujishima, A. (2000). Selective Voltammetric and
Amperometric Detection of Uric Acid with Oxidized Diamond Film Electrodes.
Anal. Chem., 72, 1724-1727.
Rivas, G.A., Rubianes, M.D., Rodrígues, M.C., Ferreyra, N.F., Luque, G.L., Pedano,
M.L., Miscoria, S.A., Parrado, C. (2007). Carbon nanotubes for electrochemical
biosensing. Talanta, 74, 291-307.
Ross, M.A. (1994). Determination of ascorbic acid and uric acid in plasma by high-performance liquid chromatography. J. Chromatogr. B, 657, 197-200.
Shahrokhian, S., Zare-Mehrjardi, H.R. (2007). Simultaneous voltammetric
determination of uric acid and ascorbic acidusing a carbon-paste electrode
modified with multi-walled carbon nanotubes/nafion and cobalt (II) nitrosalophen.
Electroanalysis, 19, 2234–2242.
Tatsuma, T., Watanabe, T. (1991). Oxidase/ peroxidase bilayer-modified electrodes as
sensors for lactate, pyruvate, cholesterol and uric acid. Anal. Chim. Acta, 242, 85–
89.
Thiagarajan, S., Tsai, T. H., Chen, S. M. (2009). Easy modification of glassy carbon
electrode for simultaneous determination of ascorbic acid, dopamine and uric acid.
Biosensors and Bioelectronics, 24, 2712–2715.
Wang, X., Jin, B., Lin, X. (2002). In-situ FTIR spectroelectrochemical study of
dopamine at a glassy carbon electrode in a neutral solution. The Japan Soc. Anal.
Chem., 12, 931- 933.
Wang, S., Du, L., Wang, L., Zhuang, H. (2004). Flow injection with inhibited
chemiluminescence method for the determination of dopamine hydrochloride.
Analytical Sciences, 20, 315-317.
GÜ, Gazi Eğitim Fakültesi Dergisi, Cilt 31, Sayı 3 (2011) 775-791 790
Wang, P., Li, Y., Huang, X., Wang, L. (2007). Fabrication of layer-by-layer modified
multilayer films containing choline and gold nanoparticles and its sensing
application for electrochemical determination of dopamine and uric acid. Talanta,
73, 431–437.
Wightman, R.M., May, L.J., Michael, A.C. (1988). Detection of dopamine dynamics in
the brain. Anal. Chem., 60, 769-779.
Yang, G., Tan, L., Shi, Y., Wang, S., Lu, X., Bai, H., and Yang, Y. (2009). Direct
Determination of Uric Acid in Human Serum Samples Using Polypyrrole
Nanoelectrode Ensembles. Bull. Korean Chem. Soc., 30(2), 454-458.
Ye, F., Nan, J., Wang, L., Song, Y., Kim, K. B. (2008). The ultrasonic
electropolymerization of an 5-[o-(4-bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) film electrode and its electrocatalytic properties to
dopamine oxidation in aqueous solution. Electrochimica Acta., 53, 4156–4160.
Yu, Z., Lin, X. Q. (2008). Simultaneous Detection of Dopamine and Uric Acid under
Coexistence of Ascorbic Acid with DNA/Pt Nanocluster Modified Electrode.
Chinese Journal of Chemistry, 26, 898-904.
Zhao, Y., Bai, J., Wang, L., XuHong, E., Huang, P., Wang, H., Zhang, L. (2006).
Simultaneous electrochimical determination of uric acid and ascorbic acid using L -Cysteine self-assembled gold electrode. Int. J. Electrochem. Sci., 1, 363-37

Thank you for copying data from http://www.arastirmax.com