INNOVATIVENESS AND THE MEASUREMENT OF KNOWLEDGE BASE DIFFERENCES’ IN TURKISH TEXTILE CLUSTERS
Journal Name:
- Gazi Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi
Keywords (Original Language):
Author Name | University of Author | Faculty of Author |
---|---|---|
Abstract (2. Language):
Successful regional development requires the ability and potential of firms and
other regional actors to have access to knowledge and to create innovation through
learning. In addition to regions' importance in learning, knowledge and innovation,
the plan and success of regional policy initiatives show distinctions with respect to
regional innovation systems and policy approaches. Knowledge sharing and
innovativeness differ across the types of regional innovation systems, modes of
governance and policy approaches in different regions. Thus, the idea of “one size
fits all” regional policy does not work (Tödtling & Trippl, 2005). Consequently,
regional development policies should be structured to be are region-sensitive and
accountable for diversities across sectors and regions (Asheim, Boschma, & Cooke,
2008). Moreover, successful regional policy initiatives should be able to transform
knowledge into innovation for sustained competitiveness. Innovation requires that
firms make use of internal and external resources. Innovation being an evolutionary
process necessitates the generation, diffusion, application and exploitation of
knowledge by regional actors.
Regional innovation systems which consist of interaction of knowledge
generation and exploitation subsystems are crucial for innovativeness of a region. In
this context, the knowledge base of the firms stands as an important determining
factor for their innovativeness. Knowledge base takes into account of the sectors’
knowledge creation process in addition to the interplay between actors and the
knowledge that is created, transmitted and absorbed (Modysson & Asheim, 2006).
There are three types of knowledge bases (analytical, synthetic and symbolic) which
include different mixes of tacit and codified knowledge. Differences in knowledge
bases help in explaining firms’ ability to create, apply and exploit knowledge for the
end of innovation. Analytical knowledge base covers science-based and codified
knowledge where new knowledge creation and learning is based on the interaction
with the knowledge infrastructure. Traditional industries such as food, engineering
and textile industry are examples of synthetic knowledge base which relies more on
practical skills, learning by doing, experience and interaction. Symbolic knowledge
base includes creative industries such as advertising, fashion design and industrial
design. Following with structured regional advantages approach to its theoretical
framework, the aim of this work is to determine the differences of innovation
capacities of textile clusters in Istanbul and Denizli which has different knowledge
bases and regional innovation systems. Istanbul is characterized as Metropolitan
region with the problem of fragmentation while Denizli is a peripheral region with
the problem of organizational thinness. In Istanbul, there are 21 private and public
universities, 2 techno-parks, 560 non-governmental institutions whereas, there is
only one public university, 40 non-governmental institutions and no techno park in
Denizli. Although Istanbul is more developed in terms of knowledge generation
infrastructure compared to Denizli, there is significant lack of interaction between
firms; and between firms and public/private institutions. Furthermore, the textile
clusters analyzed in this study have significantly different knowledge bases. Istanbul
fashion design firms operate under symbolic knowledge base whereas Denizli
bathrobe and home textile firms entail the properties of synthetic knowledge base.
Data is obtained from interviews with firms in Istanbul and Denizli (22 and 32
respectively). The questionnaire for the interviews is established within ESF-ECRP
Structured Regional Advantage Project. Results show that knowledge generation
and usage differentiate within the same sector with respect to age, education level,
employment and innovation. Istanbul firms are more complex and dynamic. Denizli
firms usually are traditional firms that depend on practical ability. This study
revealed that same policies cannot be applied to each region. What is needed to be
done is by researching the different knowledge base of the structure of the
communication networks in the sub-sectors, the relationship between innovative
capacity and knowledge base should be uncovered. Additionally, innovative policies
should be created by taking into account the differences between regions which have
different knowledge base.
Bookmark/Search this post with
Abstract (Original Language):
Yapılandırılmış bölgesel avantajlar yaklaşımı teorik çerçevesini takiben, bu
çalışmanın amacı İstanbul ve Denizli’de bulunan ve birbirinden farklı bilgi
tabanları ve bölgesel yenilik sistemlerine sahip olan tekstil kümelerinin yenilikçilik
kapasiteleri arasındaki farkları tespit etmektir. Bölgeler öğrenme, bilgi paylaşımı ve
yenilik yaratma konularında önemli olmakla beraber, bölgesel politika
girişimlerinin tasarımı ve başarısı; bölgesel yenilik sistemleri, yönetim biçimi ve
politika yaklaşımlarına göre farklılık göstermektedir. Veriler, İstanbul ve Denizli’de
bulunan firmaların (sırasıyla 22 ve 32 firma) yöneticileriyle yapılan görüşmeler
sonucu elde edilmiştir. Görüşmelerde, ESF-ECRP Yapılandırılmış Bölgesel
Avantajlar projesi bünyesinde oluşturulan anket kullanılmıştır. Elde edilen sonuçlar,
bilgi oluşumu ve bilgiyi kullanma sürecinin, aynı sektörde dahi yaş, büyüklük, eğitim
seviyesi, istihdam kaynakları, bilgi kaynağı ve yenilikçiliğe bağlı olarak anlamlı
biçimde farklılaştığını göstermektedir. İstanbul firmaları daha karmaşık ve
dinamiktir. Denizli firmaları ise çoğunlukla pratik yeteneklerine güvenen geleneksel
firmalardır. Sonuç olarak, bu çalışma her bölgeye aynı politikaların
uygulanamayacağı gerçeği ortaya koymuştur. Yapılması gereken farklı bilgi
tabanlarına sahip alt sektörlerdeki iletişim ağlarının yapılarını araştırarak
yenilikçilik kapasiteleri ve bilgi tabanları arasındaki ilişkileri ortaya çıkarmaya
çalışmak olmalıdır. Ayrıca yenilikçilik politikaları farklı bilgi tabanlarına sahip olan
bölgeler arasındaki farkları hesaba katarak oluşturulmalıdır.
FULL TEXT (PDF):
- 1
57-76