Buradasınız

BUJİ ATEŞLEMELİ HİDROJEN MOTORUNDA KARIŞIM ORANI VE ATEŞLEME AVANSININ MOTOR PERFORMANSINA VE ÇEVRİMLER ARASI FARKA ETKİSİNİN DENEYSEL ARAŞTIRILMASI

EXPERIMENTAL INVESTIGATION OF SPARK ADVANCE AND AIR-FUEL RATIO EFFECTS ON ENGINE PERFORMANCE AND CYCLIC VARIATION IN HYDROGEN FUELED SPARK IGNITION ENGINE

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, effects of spark advance and air-fuel ratio on engine performance and cyclic variation in a hydrogen fueled spark ignition engine were investigated. A four stroke, single cylinder spark ignition engine having an L type cylinder head, was used. The engine was operated at constant speed of 1500 rpm, at two different fuel-air equivalence ratio and at various ignition timing conditions. In cylinder pressure data were used for prediction of engine performance parameters. Mean indicated pressure, indicated power, indicated torque, indicated efficiency, indicated specific fuel consumption and mass fraction burned values were calculated from the analysis of pressure data. The predicted results were showed that an increase in fuel-air equivalence ratio at lean conditions was resulted in a decrease in both volumetric and indicated efficiency and an increase of engine power as well as a decrease in cyclic variation. It was also found that the cyclic variations were originated mostly from flame development angle.
Abstract (Original Language): 
Bu çalışmada, yakıt olarak hidrojeni kullanan buji ateşlemeli bir motorda ekivalans oranı ve ateşleme avansının motor performansına ve çevrimler arası farka etkisi araştırılmıştır. Çalışmada; tek silindirli, 4 zamanlı, L tipi silindir kafasına sahip buji ateşlemeli bir motor kullanılmıştır. Motor 1500 d/d sabit devirde, iki farklı yakıt-hava ekivalans oranında (φ = 0,3 ve φ = 0,6) ve farklı ateşleme avanslarında çalıştırılmıştır. Motor performans parametrelerinin tespitinde silindir içi basıncın krank açısına bağlı değişim verileri kullanılmıştır. Basınç verilerinin analizi neticesinde ortalama indike basınç, indike motor gücü, indike motor momenti, indike termik verim, indike özgül yakıt tüketimi ve yanmış kütle oranı değerleri hesaplanmıştır. Elde edilen sonuçlar, fakir karışım halinde yakıt-hava oranının artmasıyla, volümetrik verim ve indike termik verimdeki azalmaya rağmen, indike motor gücünün arttığı ve aynı zamanda çevrimler arası farkın azaldığını göstermiştir. Çevrimler arası farkın ise, büyük oranda alev gelişim açısından kaynaklandığı tespit edilmiştir.
105
114

REFERENCES

References: 

1. Lavrive, J.F., Mahieu, V., Griesemann, J.C., Rickeard, D.J., Well-to-wheels analysis of future automotive fuels and power trains in the European context, SAE paper no: 2004-01-1924, 2004.
2. Peschka, W., Hydrogen: The futures cry fuel in internal combustion engines, International Journal of Hydrogen Energy 23, 27-43, 1998.
3. Verhelst, S., Sierens, R., Hydrogen engine-specific properties, International Journal of Hydrogen Energy 26, 987-990, 2001.
4. Das, L.M., Hydrogen engine: research and development R&D) programmer in Indian Institute of Technology (IIT), Delhi, International Journal of Hydrogen Energy 27, 953-965, 2002.
5. Appleby, A.J., Fuel cells and hydrogen fuel, International Journal of Hydrogen Energy 19, 175-180, 1994.
6. Gambini, M., Vellini, M., Comparative analysis of H2/O2 cycle power plants based on different hydrogen production systems from fossil fuels, International Journal of Hydrogen Energy 30, 593-604, 2005.
7. Karim, G.A., Hydrogen as a spark ignition engine fuel, International Journal of Hydrogen Energy 28, 569-577, 2003.
8. Subramanian, V., Mallikarjuna, J.M., Ramesh, A., Performance, emission and combustion characteristics of a hydrogen fuelled SI Engine an experimental study, SAE International Mobility Eng Congress, Exposition; 2005-26-349, 2005.
9. Lee, J.T., Kim, Y.Y., Lee, C.W., An investigation of a cause of backfire and its control due to crevice volumes in a hydrogen fuelled engine, Trans ASME;123:204-213,2001.
10.Verhelst, S., Sierens, R., Hydrogen fuelled internal combustion engine, PhD Thesis of Gent University, 2005.
11. COD (College of the Desert) Hydrogen fuel cell engines and related technologies, module 3: Hydrogen use in internal combustion engines, Hydrogen Fuel Cell Engines and Related Tech.: Rev 0 (www1.eere.energy.gov), pp:1-23, 2001.
12.Das, L.M., Fuel induction techniques for a hydrogen operated engine, International Journal of Hydrogen Energy 15, 833-842, 1990.
13.Yi, H.S., Min K., Kim E.S., The optimized mixture formation for hydrogen fuelled,
International Journal of Hydrogen Energy 25,685-690, 2000.
14. Rottengruber H., Berckmüller, M., Elsässer, G., Brehm, N., Schwarz C., Direct injection hydrogen SI-engine operation strategy and power density potentials, SAE paper no: 2004-01-2927, 2004.
15.Kim, Y.Y., Lee, J.T., Caton, J.A., The development of a dual-Injection hydrogen fueled engine with high power and high efficiency, J, Eng, Gas Turbines Power, ASME, 128(1): 203-212, 2006.
16.Kabat, D.M., Heffel, J.W., Durability implications of neat hydrogen under sonic flow conditions on pulse-width modulated injectors, International Journal of Hydrogen Energy 27, 1093-1102, 2002.
17.Das, L.M., Hydrogen engines: A view of the past and a look into the future, International Journal of Hydrogen Energy 15,425-430,1990.
18.Yamin Jehad A.A., Gupta H.N., Bansal B.B., Srivastava O.N., Effect of combustion duration on the performance and emission characteristics of a spark ignition engine using hydrogen as a fuel, International Journal of Hydrogen Energy 25, 581-589, 2000.
19.Verhels, S., Wallner, T., Hydrogen-fueled internal combustion engines, Progress in Energy and Combustion Science 35, 490-527, 2009.
20. Tang, X.G., Daniel, M.K., Robert, J.N., Ford P2000 Hydrogen engine dynamometer development, SAE paper no: 2002-01-0242, 2002.
21.McCarley, C.A., A study of factor influencing thermally induced backfiring in hydrogen fuelled engines, and methods for backfire control, In:16th Intersociety energy conversion engineering conference, Atlanta, USA, 1981.
22.Heywood, J.B., Internal Combustion Engine Fundamentals, McGraw-Hill, ISBN 0071004998, 1988.
23. Rassweiler, G. M., Withrow L., Motion Pictures of Engine Flames Correlated with Pressure Cards, SAE Trans, Vol: 83, pp:185-204, 1938.
24. Buran, D., Turbulent Flame Propagation in a Methane Fuelled Spark Ignition Engine, PhD thesis, School of Mechanical Engineering, The University of Leeds, England, 1998.
25. Furuhama, S., Hiruma, M., Enomoto, Y., Development of a liquid hydrogen car, International Journal of Hydrogen Energy 3, 61-81, 1978.
26. Shudo, T,, Nakajima, Y., Fatakuchi, T., Thermal efficiency analysis in a hydrogen premixed combustion engine. JSAE Rev 21,177-182, 2000.
27.Kim Y.Y., Lee J.T., Choi G.H, An investigation on the causes of cycle variation in direct injection hydrogen fueled engines, International Journal of Hydrogen Energy 30, 69-76, 2005.

Thank you for copying data from http://www.arastirmax.com