Buradasınız

GÜÇ KALİTESİNDEKİ BOZULMA TÜRLERİNİN SINIFLANDIRILMASI İÇİN BİR ÖRÜNTÜ TANIMA YAKLAŞIMI

A PATTERN RECOGNITION APPROACH FOR CLASSIFICATION OF POWER QUALITY DISTURBANCE TYPES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, an algorithm based on pattern recognition approach is proposed for classification of power quality disturbance types. For feature extraction which is an important part of the pattern recognition, a method based on entropy which uses the decomposition coefficients of wavelet transform is presented. The most important advantage of the method is the reduction of data size without losing main distinguishing characteristics of signal. Support vector machines based on statistical learning theory is used as a classifier. The performance of the proposed algorithm is evaluated by using real and synthetic power quality disturbance data. Real power quality disturbance data are obtained from our national power system. Besides, the synthetic power quality disturbance data are obtained from ATP/EMTP and mathematical models. The analyses and results obtained in this study show that proposed algorithm has an efficient, feasible and practical structure.
Abstract (Original Language): 
Bu çalışmada, güç kalitesindeki bozulma türlerinin sınıflandırılması için örüntü tanıma yaklaşımlarına dayalı bir algoritma önerilmiştir. Örüntü tanımanın önemli bir kısmı olan özellik çıkarma için, dalgacık dönüşümünün ayrıştırma katsayılarını kullanan entropi temelli bir yöntem sunulmuştur. Yöntemin en önemli avantajı, işaretin ayırt edici özelliklerini kaybetmeksizin veri boyutunu indirgeyebilmesidir. Sınıflandırıcı olarak, istatistiksel öğrenme teoremine dayanan destek vektör makineler kullanılmıştır. Önerilen algoritmanın başarımı, gerçek ve yapay güç kalitesi bozulma verileri kullanılarak değerlendirilmiştir. Gerçek güç kalitesi bozulma verileri, ulusal enerji sistemimizden elde edilmiştir. Yapay veriler ise, ATP/ EMTP modelinden ve matematiksel modellerden elde edilmiştir. Çalışmadan elde edilen analiz ve sonuçlar, önerilen algoritmanın etkin, güvenilir ve uygulanabilir bir yapıya sahip olduğunu göstermektedir.
41
56

REFERENCES

References: 

1. Dugan, R.C., Mcgranaghan, M.F., Santoso, S. ve
Beaty, H.W., Electrical Power Systems Quality,
McGraw-Hill, New York, 2002.
2. Gaouda, A.M., Salama, M.M.A., Sultan, M.R.,
Chikhani, A.Y., “Power “Quality Detection and
Classification using Wavelet-Multiresolution
Signal Decomposition”, IEEE Trans. on Power
Deliv., 14, 4, 1469-1476, 1999.
3. Güç Kalitesi Milli Projesi,
http://www.guckalitesi.gen.tr.
4. Gaouda, A.M., Wavelet-Automated
Recognition System for Power Quality
Monitoring, Phd Thesis, University of Waterloo,
1999.
5. AbdelGalil, T., Automated Recognition System
for Power Quality Disturbances, Phd Thesis,
University of Waterloo, 2003.
6. Flores, R.A., “State of the Art in the
Classification of Power Quality Events, an
Overview”, 10th Int. Conf. Harmonics Quality
of Power, Rio de Janeiro, Brazil, 1, 17–20, 2002.
7. Perunicic, B., Mallini, M., Wang, Z., Liu, Y.,
“Power Quality Disturbance Detection and
Classification using Wavelets and Artificial
Neural Networks”, 8th Int. Conf. on Harmonics
and Quality of Power, Athens, Greece, 1, 77–
82, 1998.
8. Liao, Y., Lee, J.-B., “A Fuzzy-Expert System for
Classifying Power Quality Disturbances”,
International Journal of Electrical Power &
Energy Systems, 26, 3, 199-205, 2004.
9. AbdelGalil, T.K., Kamel, M., Youssef, A.M., El-
Saadany, E.F., Salama, M.M.A., “Power Quality
Disturbance Classification using the Inductive
Inference Approach”, IEEE Trans. Power
Deliv., 19, 4, 1812–1818, 2004.
10. Strang, G., Nguyen, T., Wavelets and Filter
Banks, Cambridge Press, Wellesley, 1996.
11. Cortes, C., Vapnik, V. N., “Support Vector
Networks”, Machine Learning, 20, 3, 273-293,
1995.
12. Vapnik, V.N., The Nature of Statistical
Learning Theory, Springer-Verlag, New York,
1995.
13. Schölkopf, B., Sung, K., Burges, C., Girosi, F.,
Niyogi, P., Poggio, T., Vapnik, V., “Comparing
Support Vector Machines with Gaussian Kernels
to Radial Basis Function Classifiers”. IEEE
Trans. on Signal Processing, 45, 11, 2758–
2765., 1997.
14. Keerthi, S.S., Lin, C.-J., “Asymptotic Behaviors
of Support Vector Machines with Gaussian
Kernel”, Neural Computation, 15, 7, 1667–
1689, 2003.
15. Vapnik V.N., The Nature of Statistical
Learning Theory, Second Edition, Springer
Science, New York, 2000
16. Cristianini, N., Shawe-Taylor, J., An
Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods,
Cambridge University Press, New York, 2000.
17. Uyar, M., Güç Kalitesindeki Bozulma
Türlerinin Akıllı Örüntü Tanıma Yaklaşımları
ile Belirlenmesi, Doktora Tezi, Fırat
Üniversitesi, Fen Bilimleri Enstitüsü, 2008.
18. Uyar, M., Yildirim, S., Gencoglu, M.T., “An
Effective Wavelet-Based Feature Extraction
Method for Classification of Power Quality
Disturbance Signals”, Electric Power Systems
Research, 78, 10, 1747–1755, 2008.
19. Türkoğlu, İ., Durağan Olmayan İşaretler İçin
Zaman-Frekans Entropilerine Dayalı Akıllı
Örüntü Tanıma, Doktora Tezi, Fırat
Üniversitesi, Fen Bilimleri Enstitüsü, 2003.
20. Salor, Ö, Buhan, S., Ünsar, Ö., et.al., “Mobile
Monitoring System to Take Nationwide PQ
Measurements on Electricity Transmission
Systems”, Measurement, 42, 501–515, 2009.
21. Dommel H.W., Electromagnetic Transients
Program. Reference Manual (EMTP theory
book), Bonneville Power Administration,
Portland, 1986.
22. Kizilcay, M., Review of Solution Methods in
ATP-EMTP, EEUG News, 2001.
23. He, H., Starzyk, J.A., “A Self-Organizing
Learning Array System for Power Quality
Classification Based on Wavelet Transform”,
IEEE Trans. Power Deliv., 21, 1, 286–295,
2006.
24. Yang, H.T., Liao, C.C., “A De-Noising Schemes
for Enhancing Wavelet-Based Power Quality
Monitoring System”, IEEE Trans. Power
Deliv., 16, 7, 353–360, 2001.
25. Panigrahi, B.K., Sinha, S.K., “Detection and
Classification of Non-Stationary Power
Disturbances in Noisy Conditions”, Power
Electronics, Drives and Energy Systems
PEDES’06, New Delhi, India, 1–5, 2006.
26. Janik, P., Lobos, T., “Automated Classification of
Power-Quality Disturbances using SVM and RBF
Networks”, IEEE Trans. on Power Deliv., 21, 3,
1663–1669, 2006.

Thank you for copying data from http://www.arastirmax.com