Buradasınız

BAZİK AMBERLİT REÇİNELER VARLIĞINDA TRANSESTERİFİKASYON REAKSİYONU VE YÜZEY CEVAP METODU İLE OPTİMİZASYONU

TRANSESTERIFICATION REACTION OVER BASIC AMBERLYST RESIN CATALYSTS AND OPTIMIZATION VIA RESPONSE SURFACE METHODOLOGY

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, transesterification activity of sunflower oil with methanol was tested over Amberlyst A-21 (A-21) and Amberlyst A-26 (A-26) type ion exchange resins which have high Hammett basic strength. Transesterification reactions were carried out in a three necked batch reactor at operating temperatures of 40 to 55°C, methanol-oil initial molar ratio of 3:1 to 6:1 and 1% to 5% (of oil) weight percentages of catalysts. A-26 catalyst was determined to be more active than A-21, with a % 91 conversion at 50°C and 6:1 methanol-oil initial molar ratio. % 88 conversion was achieved with the same reaction conditions over A-21 catalyst. Experiments were designed by using Box-Wilson experimental design method. Experimental results were analyzed by using “Design Expert 8.0.6.1” program. Mass transfer limitations was not significant. An increase in temperature and initial molar ratio of reactants caused an increase in biodiesel conversion. Hammett basic strength of these two catalysts were found as H_>9.8. Swelling behaviour of the polymeric structured catalysts was measured %100 at all reaction temperatures.
Abstract (Original Language): 
Bu çalışmada, ayçiçek yağının metanol ile transesterifikasyonu, Amberlit A-21 (A-21) ve Amberlit A-26 (A-26) tipi yüksek Hammett baziklik kuvvetine sahip iyon değiştirici reçineler varlığında test edilmiştir. Transesterifikasyon reaksiyonları üç boyunlu kesikli bir reaktörde, 40-55°C sıcaklık aralığında, metanol-yağ başlangıç molar oranları 3:1 ile 6:1 ve %1 ile %5 katalizör ağırlık yüzdesinde (yağın) yürütülmüştür. A-26 katalizörü , 50oC ve 6:1 metanol:yağ başlangıç molar oranında % 91 dönüşümle A-21 katalizörüne göre daha yüksek aktivite göstermiştir. Aynı reaksiyon şartlarında A-21 katalizörlüğünde % 88 dönüşüme ulaşılmıştır. Box-Wilson Deneysel Tasarım Yöntemi’ne göre belirlenen reaksiyon şartlarında elde edilen sonuçlar Design Expert 8.0.6.1 programı kullanılarak analiz edilmiştir. Sıcaklık ve reaktanların başlangıç molar oranındaki artışın trigliserit dönüşümünü artırdığı gözlenmiştir. Çalışılan reaksiyon koşullarında kütle transfer direncinin olmadığı belirlenmiştir. Her iki katalizörün de Hammett baziklik kuvvetleri H_>9,8 olarak bulunmuştur. Polimerik yapılı bu katalizörlerin metanol içerisindeki şişme davranışları ise incelenen tüm reaksiyon sıcaklıklarında %100 olarak ölçülmüştür.
71
79

REFERENCES

References: 

1. Murugesan, A., Umarani, C., Subramanian, R. ve
Nedunchezhian, N., “Bio-diesel As An
Alternative Fuel For Diesel Engines-A Review”,
Renewable and Sustainable Energy Reviews,
Cilt 13, No 3, 653-662, 2009.
2. Hoydonckx, H.E., De Vos, D.E., Chavan, S.A.
ve Jacobs, P.A. “Esterification And
Transesterification Of Renewable Chemicals”,
Topics in Catalysis, Cilt 27, No 1-4, 83-96,
2004.
3. Bozbas, K., ”Biodiesel As An Alternative Motor
Fuel: Production And Policies In The European
Union”, Renewable and Sustainable Energy
Reviews, Cilt 12, No 2, 542–552, 2008.
4. Demirbas, A., “Importance Of Biomass Energy
Sources For Turkey”, Energy Policy, Cilt 36, No
2, 834–842, 2008.
5. Georgogianni, K.G., Katsoulidis, A.K.,
Pomonis, P.J., Manos, G. ve Kontominas, M.G.,
“Transesterification Of Rapeseed Oil For The
Production Of Biodiesel Using Homogeneous
and Heterogeneous Catalysis”, Fuel Processing
Technology, Cilt 90, No 7-8, 1016–1022, 2009.
6. Sakai, T., Kawashima, A. ve Koshikawa, T.
”Economic Assessment Of Batch Biodiesel
Production Processes Using Homogeneous And
Heterogeneous Alkali Catalysts” Bioresource
Technology, Cilt 100, No 13, 3268–3276, 2009.
7. Patil, P., Deng, S., Rhodes, J.I. ve Lammers P.J.
”Conversion Of Waste Cooking Oil To Biodiesel
Using Ferric Sulfate And Supercritical Methanol
Processes”, Fuel, Cilt 89, No 2, 360-364, 2010.
8. Liu, X., He, H., Wang, Y., Zhu, S. ve Piao,
X.,”Transesterification Of Soybean Oil To
Biodiesel Using CaO As A Solid Base Catalyst”,
Fuel, Cilt 87, No 2, 216–221, 2008.
9. Ozbay, N., Oktar, N. ve Tapan, N.A.,
“Esterification Of Free Fatty Acids In Waste
Cooking Oils (WCO): Role Of Ion-Exchange
Resins”, Fuel, Cilt 87, No 10-11, 1789-1798
2008.
10. Keskin, A., Gürü, M. ve Altıparmak, D.,
“Investigation of 90% Blend of Tall Oil
Biodiesel Fuel with Diesel Fuel As Alternative
Diesel Fuel”, Journal of the Faculty of
Engineering & Architecture of Gazi
University, Cilt 22, No 1, 57-63, 2007.
11. Keskin, A., Gürü, M. ve Altıparmak,
D.,”Influence Of Tall Oil Biodiesel With Mg And
Mo Based Fuel Additives On Diesel Engine
Performance And Emission”, Bioresource
Technology, Cilt 99, No 14, 6434–6438, 2008.
12. Fukuda, H., Kondo, A. ve Noda H., “Biodiesel
Fuel Production By Transesterification Of Oils”
Journal of Bioscience and Bioengineering, Cilt
92, No 5, 405–416, 2001.
Bazik Amberlit Reçineler Varlığında Transesterifikasyon Reaksiyonu… N. Oktar ve ark.
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 1, 2012 79
13. Gupta, M.N. ve Roy, I., “Enzymes In Organic
Media-forms, Functions And Applications”
European Journal of Biochemistry, Cilt 271,
No 13, 2575–2583, 2004.
14. Jaeger, K.E. ve Eggert, T., “Lipases For
Biotechnology” Current Opinion in
Biotechnology, Cilt 13, No 4, 390–397, 2002.
15. Kusdiana, D. ve Saka, S., “Methyl Esterification
Of Free Fatty Acids Of Rapeseed Oil As Treated
In Supercritical Methanol”, Journal of Chemical
Engineering of Japan, Cilt 34, No 3, 383–387,
2001.
16. Kusdiana, D. ve Saka, S., “Two-step Preparation
For Catalyst-free Biodiesel Fuel Productionhydrolysis
And Methyl Esterification”, Applied
Biochemistry and Biotechnology, Cilt 113,
781–791, 2004.
17. Sharma, M. M., “Some Novel Aspects Of
Cationic Ion-exchange Resins As Catalysts”
Reactive and Functional Polymers, Cilt 26, No
1-3, 3-23, 1995.
18. Çelikten, İ ve Gürü, M., “Petrodiesel And
Rapeseed Oil Biodiesel With Manganese Based
Additive”, Journal of the Faculty of
Engineering and Architecture of Gazi
University, Cilt 26, No 3, 643-648, 2011.
19. Balbaşı, M., Bartan, A., Ar, İ., Gürü, M.,
“Development of low cost heterogeneous
catalysts for biodiesel processes” Energy
Sources, Part A, Cilt 33, No 11, 1035-1047,
2011.
20. Gao, Y.-Y., Chen, W.-W., Lei, H., Liu, Y.,
“Optimization of transesterification conditions
for the production of fatty acid methyl ester
(FAME) from Chinese tallow kernel oil with
surfactant-coated lipase” Biomass and
Bioenergy, Cilt 33, 277–282, 2009.
21. Ghadge, S.V., Raheman, H., “Process
optimization for biodiesel production from mahua
(Madhuca indica) oil using response surface
methodology” Bioresource Technology, Cilt 97,
379–384, 2006.
22. Jeong, G.-T., Yang, H.-S., “Optimization of
transesterification of animal fat ester using
response surface methodology” Bioresource
Technology, Cilt 100, 25–30 2009.
23. Rohm and Haas,
http://www.rohmhaas.com/history
24. MacLeod, C., Evaluation of Heterogeneous
Catalysts for Biodiesel Production, Doktora
Tezi, Newcastle University, School of Chemical
Engineering and Advanced Materials, 2008.

Thank you for copying data from http://www.arastirmax.com