Buradasınız

STEATİTİN ENJEKSİYONLA KALIPLANABİLİRLİĞİNE BESLEME STOK REOLOJİLERİNİN ETKİSİNİN ARAŞTIRILMASI

INVESTIGATION OF EFFECT OF FEEDSTOCK RHEOLOGIES FOR INJECTION MOLDING OF STEATITE

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In this study, the net-shape injection molding of steatite for the most appropriate rheology, debinding and molding parameters were determined. The investigations of the rheology as four different feedstock of melt flow index (554 - 988 g/10 min), flow behavior index (0.507 - 0.601), fluency (5.21 - 8.99 x10-3Pa-1s-1) and activation energy values (26,9 – 39,1 kJ/mol) were ideally determined using by capillary and torque rheometer machine. The steatite + polyethyleneglycol (PEG) + polypropylene (PP) + stearik asit (SA) have most ideally mixture for rheology. This feedstock for molding was occured at different flow rate (15-25 cm3), cylinder temperature (185- 200 0C) and injection pressure (1000-1350 bar) values. The debinding processes carrided out at two steps as solvent and thermal debinding. The thermal debinding carried 10 0C/min and 10C/min for heating rate. The samples were investigated to determine of distortion, cracks and deformation in the inner parts with SEM machine. The net-shaped samples were obtained at optimum rheology, debinding and molding parameters.
Abstract (Original Language): 
Bu çalışmada; steatitin enjeksiyonla hatasız kalıplanması için en uygun reoloji, bağlayıcı giderme ve kalıplama parametreleri belirlenmiştir. Kılcal ve tork reometre çalışması ile dört farklı besleme stoğu için erime akış indeksi (554 - 988 g/10 dakika), akış davranış indeksi (0,507 - 0,601), akıcılık (5,21 - 8,99 x10-3Pa-1s-1) ve aktivasyon enerjisi (26,9 - 39,1 kJ/mol) değerleri belirlenerek en ideal besleme stoğu tespit edilmiştir. Reolojik açıdan en ideal besleme stoğu Steatit + polietilenglikol (PEG) + polipropilen (PP) + stearik asit (SA)’den oluşan karışımdır. Bu besleme stoku için farklı akış hızı (15-25 cm3), silindir sıcaklığı (185-200 0C) ve enjeksiyon basıncı (1000-1350 bar) değerleri için kalıplama yapılmıştır. Kalıplanmış numunelere bağlayıcı giderme işlemi çözgen ve ısıl olmak üzere iki şekilde gerçekleştirilmiştir. Isıl bağlayıcı giderme 100C/dakika ve 10C/dakika ısıtma hızında gerçekleştirilmiştir. Sonrasında optimum reoloji, bağlayıcı giderme ve kalıplama parametreleri ile üretilmiş numunelere SEM incelemesi yapılmıştır. Çarpılma, iç çatlak ve deformasyona rastlanmayan final parçaları elde edilmiştir.
333
341

REFERENCES

References: 

1. German R.M., Powder Injection Molding, Metal
Powder Industries Federation, Princeton, USA, 1990.
2. German R.M. and Bose A., Injection Molding of
Metals and Ceramics, Metal Powder Industries
Federation, Princeton, USA, 1997.
3. Mutsuddy B.C., R.G. Ford, Ceramic Injection
Molding, Chapman and Hall, UK, 1995.
4. Ahn S., Chung S.T., Atre S.V., Park S.J., German
R.M., Integrated filling, packing, and cooling CAE
analysis of powder injection molding parts, Powder
Metallurgy,Vol. 51, No: 4, pp. 318–326, 2008.
5. Yang W.W., Yang K.Y., Hon H.H., Solvent
debinding mechanism for alumina injection molded
compact with water-soluble binders, Ceramic
International, 29 (7), 745-756, 2003.
6. Bandyopadhyay G. and French K.W., Injection
molded ceramics: critical aspects of the binder
removal process and component fabrication, J. Eur.
Ceram. Soc., 11, 23–34, 1993.
7. Hwang K.S. and Tsou T.H., Thermal debinding of
powder injection molded parts: observations and
mechanisms, Metall. Trans., 23A, 2775–2782, 1992.
8. Verweij H. and Bruggink W.H.M., Reactioncontrolled
binder burnout of ceramic multilayer
capacitors, J. Am. Ceram. Soc., 73, 226–231, 1990.
9. Woodthorpe J., Edirisingheand M.J. and Evans
J.R.G., Properties of ceramic injection moulding
formulations, Part 3: Polymer Removal. J. Mater.
Sci., 24, 1038–1048, 1989.
10. Supati R., et al., Mixing and characterization of
feedstock for powder injectionmolding, Materials
Letters, 46, (2-3), 109-114, 2000.
11. Lin, H. K. and Hawang, K.S., In situ dimensional
changes of powder injection molded compact during
solvent debinding, Acta. Mater., 46 (12), 4303-4309,
1998.
12. Goodship, V., Practical guide to injection
moulding, Rapra Technology, Shawbury, 2004.
13. Thomas-Vielma, A. Cervera, B. Levenfeld, A.
Várez, Production of alumina parts by powder
injection molding with a binder system based on high
density polyethylene, Journal of the European
Ceramic Society, 28(4), 763-771, 2008.
14. Merz L., et al., Feedstock development for micro
powder injection molding, Microsyst. Technol., 8,
129-132, 2002.
15. Angermann H.H. and Biest O.V., Rev.
Particulate Mater., 3, 35, 1995
16. Gorjan L., Dakskobler A., Kosmač T., Partial
wick-debinding of low-pressure powder injectionmoulded
ceramic parts, Journal of the European
Ceramic Society, 30 (15), 3013-3021, 2010.
17. Redy J.J., Ravi N., Vijayakumar M., Simple
model viscosity of powder injection mouldingmixez
with binder content above powder critical binder
volume concentration, J.Eur. Ceram. Soc., 20, 2183-
2190, 2000.
18. Hsu K.C., Lin C.C. Lo G.M., Efferct of wax
composition on injection moulding of 304 L stainless
steel powder, Powder Metal., 37, 272-276, 1994.
19. Zhang T., Evans J.R.G., Woodhorpe J., Injection
moulding of silicon carbide using on organic vehicle
based on a preceramic polymer, J. Eur. Ceram. Soc.
15, 729-734, 1995
20. Hens K.F., German R.M., Advanced processing of
advanced materials via powder injection molding,
Advances in Powder Mettalurgy and Particulate
Materials, 5, 153-164, 1993.
21. Amaya H.E., Solvent dewaxing: principles and
application, in Proceedings of the Powder Metallurgy
Conferences on Advances in Powder Metallurgy,
3, 233-246, 1990.
22. Urtekin L., Toz Enjeksiyon Kalıplanmış Steatit
Seramiklerin Özelliklerine Kalıplama Ve Sinterleme
Parametrelerinin Etkisinin Deneysel Olarak
İncelenmesi, Doktora Tezi, Gazi Üniversitesi Fen
Bilimleri Enstitüsü, 2008.
23. Mutsuddy B.C., Injection molding research paves
way to ceramic engine parts, J. Ind. Res. Dev., 25b,
76-80, 1983.
24. F. Moore, Rheology of ceramic systems, Institute
of Ceramics, UK, 18, 1965.
25. Edirisinghe M.J., Shaw H.M., Tomkins K.L., Flow
behavior of ceramics injection moulding suspensions,
Ceramic International, 18, 193-200, 1992.
26. Shibo G., Xuanhui Q., Xinbo H., Ting Z.,
Bohuave D., Powder injection molding of Ti–6Al–4V
alloy, Journal of Materials Processing Technology,
173(3), 310-314, 2006.
27. Yang W.W., Yang K.Y., Hon H.H., Effect of PEG
molecular weight on rheological behaviour of alumina
Steatitin Enjeksiyonla Kalıplanabilirliğine Besleme Stok Reolojilerinin Etkisinin Araştırılması L. Urtekin ve ark.
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 2, 2012 341
injection molding feedstock, Materials Chemistry
and Physics, 78, 416-424, 2002.
28. Karataş, Ç.,Sarıtaş, S., Powder Injection Molding:
A High Technology Manufacturing Process, Journal
of The Faculty of Engineering and Architecture of
Gazi University, 13/2, 193-228,1998.
29. Edirisinghe M.J., Evans J.R.G., Rheology of
ceramic injection molding formulations, Ceramic
Trans. J., 86, 18-22, 1987.
30. Karatas C., Kocer A., Ünal H. I., Saritas S.,
Rheological properties of feedstocks prepared with
steatite powder and polyethylene-based thermoplastic
binders, Journal of Materials Processing
Technology, 152 (1), 77-831, 2004.
31. CaO M.Y., Rhee B.O, Chuy CI., Usefulness of
viscosity measurement of feedstock in powder
injection molding, Advances in Powder Metallurgy,
2, MPIF, Princeton, NJ, USA, 1991.
32. Urtekin L, Uslan I. and Tuc B., Investigation of
Properties of Powder Injection-Molded Steatites,
Journal of Materials Engineering and
Performance, 21 (3), 358-365, 2012.

Thank you for copying data from http://www.arastirmax.com