Buradasınız

HOMOJEN OLMAYAN SIĞ KÜRESEL KABUĞUN TERMAL BURKULMA ANALİZİ

THERMAL BUCKLING ANALYSIS OF NON-HOMOGENOUS SHALLOW SPHERICAL SHELLS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, the thermal buckling analysis of the non-homogenous shallow spherical shell is investigated. Firstly, the analytical modeling of non-homogenous material properties and appropriate thermal expansion coefficient which vary continuously through the thickness direction is made. In the formulation of the problem, Kirchhoff-Love’s first order shell theory is used and Hooke’s law is taken into account for stress-strain relations. By using Donnell–Mushtari–Vlasov’s (DMV) assumptions and linear stress-displacement relation, the stability equations depending on three displacements are obtained. Stability equations are solved for the simply supported boundary condition and analytical expression for the dimensionless critical uniform temperature rise is found. In numerical computations, the effects of variations of the elasticity modulus and appropriate thermal expansion coefficient as a power function according to thickness direction and variation of the geometric parameters of the sphere on the critical uniform temperature rises are examined as. To test the validity of this study, the obtained results are compared with counterparts in the open literature.
Abstract (Original Language): 
Bu çalışmada sürekli homojen olmayan sığ küresel kabuğun termal burkulma analizi incelenmektedir. Önce, kalınlık doğrultusunda sürekli değişen izotrop malzeme özellikleri ve uygun termal genleşme katsayısının analitik modelleri oluşturulmaktadır. Problemin formülasyonunda Kirchhoff-Love’nin birinci mertebeden kabuk teorisi kullanılmakta ve gerilme-deformasyon bağıntılarında Hooke kuralı dikkate alınmaktadır. Donnell– Mushtari–Vlasov (DMV) varsayımları ve doğrusal gerilme-yer değiştirme bağıntıları kullanılarak kuvvet ve moment bileşenleri bulunmakta ve stabilite denklemlerinde yerine yazılarak üç yer değiştirmeye bağlı diferansiyel denklemler elde edilmektedir. Stabilite denklemleri basit mesnetli sınır koşuluna göre çözülerek sığ küresel kabuğun boyutsuz kritik üniform sıcaklık artışı için analitik ifade bulunmaktadır. Sayısal hesaplarda malzemenin elastisite modülü ve uygun termal genleşme katsayısının kalınlık koordinatlarına bağlı kuvvet fonksiyonu şeklinde değişimi ve kürenin geometrik parametreleri değişiminin kritik uniform sıcaklık artışına etkileri incelenmektedir. Elde edilen sonuçlar literatürde sunulan çözümlerle karşılaştırılarak çalışmanın doğruluğu teyit edilmiştir.
397
406

REFERENCES

References: 

1. Ogibalov, P.M. ve Gribanov, V.F., Thermoelastic
Stability of Plates and Shells, Moscow
State University, Rusya, 1968.
2. Kaplan, A., “Buckling of Spherical Shells”, Thin
Shell Structures. Theory, Experiment and
Design, Editörler: Fung, Y.C., ve Sechler, E.E.,
Prentice-Hall, Englewood Cliffs, 247-288, 1974.
3. Khoroshun, L.P., Kozlov, S.Y., Ivanov, Y.A. ve
Koshevoi, I.K., The Generalized Theory of
Plates and Shells Non-homogeneous in
Thickness Direction, Naukova Dumka, Kiev,
1988.
4. Ootao, Y. ve Tanigawa, Y., “Three-dimensional
Transient Thermal Stress Analysis of a
Nonhomogeneous Hollow Sphere with Respect to
a Rotating Heat Source”, Bulletin of the Japan
Society of Mechanical Engineers, Cilt 460,
2273-2279, 1994.
5. Sofiyev, A.H. ve Schnack, E., “The Buckling of
Cross-ply Laminated Non-homogeneous
Orthotropic Composite Conical Thin Shells
Under a Dynamic External Pressure”, Acta
Mechanica, Cilt 162, 29-40, 2003.
6. Shen, H.S. ve Noda, N., “Post-buckling of
Pressure-loaded FGM Hybrid Cylindrical Shell in
Thermal Environments”, Composite Structures,
Cilt 77, 546-560, 2007.
7. Budiansky, B., “Buckling of Clamped Shallow
Spherical Shells”, Proc. IUTAM Symp. on the
theory of thin elastic shells, Delft, Netherlands,
64-94, 1959.
8. Aggarwala, B.D. ve Saibel, E., “Thermal
Stability of Bimetallic Shallow Spherical Shells”,
International Journal of Non-linear
Mechanics, Cilt 5, 49-62, 1970.
9. Jianping, P. ve Harik, I.E., “Thermal Stresses in
Spherical Shells”, Journal of Aerospace
Engineering, Cilt 6, 106-110, 1993.
10. Eslami, M.R., Ghorbani, H.R. ve Shakeri, M.,
“Thermo-elastic Buckling of Thin Spherical
Shells”, Journal of Thermal Stresses, Cilt 24,
1177-1198, 2001.
11. Batista, M. ve Kosel, F., “Thermoelastic Stability
of Bimetallic Shallow Shells of Revolution”,
International Journal of Solids Structures, Cilt
44, 447-464, 2007.
12. Shahsiah, R., Eslami, M.R. ve Naj, R., “Thermal
Instability of Functionally Graded Shallow
Spherical Shell” Journal of Thermal Stresses,
Cilt 29, 771-785, 2006.
13. Ganapathi, M., “Dynamic Stability
Characteristics of Functionally Graded Materials
Shallow Spherical Shells”, Composite
Structures, Cilt 79, 338-343, 2007.
14. Akış, T., “Yielding of Functionally Graded Long
Tubes under Thermal Loading”, Journal of the
Faculty of Engineering Architecture of Gazi
University, Cilt 21, 737-743, 2006.
15. Sofiyev, A.H., Özyiğit, P., Avcar, M. ve Zerin,
Z., “The Stability of Continuously Nonhomogenous
Spherical Shells Subjected to
External Pressure”, 9th International Congress
on Advances in Civil Engineering, KATU,
Trabzon, 303, 27-30, Eylül 2010.
16. Timoshenko, S. ve Woinoswsky-Krieger, S.,
Theory of Plates and Shells, McGraw-Hill,
1985.
17. Flügge, W., Stresses in Shells, (second ed.),
Springer, Berlin, 1973.

Thank you for copying data from http://www.arastirmax.com