Buradasınız

TEK SİLİNDİRLİ BİR DİZEL MOTORUNUN DİNAMİK VE TİTREŞİM ANALİZLERİ

DYNAMIC AND VIBRATION ANALYSIS OF A SINGLE CYLINDER DIESEL ENGINE

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, by preparing a dynamic model for the system consisting of piston, piston rod, crankshaft and block of a single cylinder four stroke diesel engine, the speed fluctuations of the crankshaft and translational vibrations of the engine block were examined. The dynamic model has four degrees of freedom as; the angular motion of the crankshaft, the angular motion of the engine block around the crankshaft center, and the translational vibrations of the engine block in the vertical and horizontal directions. In the analysis, the pressure profiles obtained from a single cylinder four stroke diesel engine at four different engine loads were used. The oscillation of crankshaft angular velocity was found to be increasing with the engine load. The angular vibrations of the engine block around the crankshaft center was found to be arising from the gas forces, the translational vibrations in the vertical and horizontal directions were found to be arising from the inertia of piston and unbalance of crankshaft. It was found that the counterweight used for minimizing the vertical vibration generates a horizontal vibration besides reducing vertical vibration. Therefore, reduction of its amplitude into the half was found to be more appropriate, instead of reducing to zero. From the mount force datum, which is dependent on frequency, the optimum spring and damping constants of the mounts were found as 100 kN/m and 1000 Ns/m, respectively.
Abstract (Original Language): 
Bu araştırmada tek silindirli dört zamanlı bir dizel motorunun piston, biyel, krank ve bloğunun dinamik modeli oluşturularak krank milinin çevrimlik açısal hız değişimleri ve bloğun titreşimleri incelenmiştir. Oluşturulan dinamik model dört serbestlik dereceli olup sırasıyla krank milinin açısal hareketini, bloğun krank mili ekseni etrafındaki açısal hareketini, bloğun düşey ve yatay doğrultulardaki doğrusal hareketlerini kapsamaktadır. Analizde dört farklı motor yükü için deneysel olarak elde edilen gaz basınç profilleri kullanılmıştır. Krank milinin açısal hızındaki değişimlerin motor yüküyle arttığı gözlemlenmiştir. Motor bloğunun krank mili ekseni etrafındaki açısal titreşimlerinin gaz kuvvetlerinden, düşey ve yatay doğrultulardaki doğrusal titreşimlerinin ise piston kütlesi ve krank milinin balansızlığından kaynaklandığı belirlenmiştir. Pistonun kütle ataletinden kaynaklanan düşey titreşimin azaltılması için kullanılan balans ağırlıklarının, yatay eksendeki titreşimi arttırdığı anlaşılmıştır. Bu sebeple düşey eksendeki titreşim genliğinin sıfırlanması yerine genliği yarıya indirecek balans ağırlıklarının kullanılmasının gerekli olduğu görülmüştür. Frekansa bağlı olarak elde edilen takoz kuvveti değerlerinden; takozların yay ve sönümleme sabitlerinin optimum değerleri sırasıyla 100 kN/m ve 1000 Ns/m olarak belirlenmiştir.
491
500

REFERENCES

References: 

1. Siefert, A., Pankoke, S., ve Wölfel, H.P., “Virtual
Optimisation of Car Passenger Seats: Simulation
of Static and Dynamic Effects on Drivers’
Seating Comfort”, International Journal of
Industrial Ergonomics, 38, 410-424, 2008.
2. Karabulut, H., Öztürk, E., Çınar, C., “Dynamic
Modeling and Investigation of Vibrations of a
Single Cylinder Four-Stroke Diesel Engine”, J.
Fac. Eng, Arch. Gazi Univ., Cilt 26, No 1, 173-
183, 2011.
3. Taylor, C.F., The Internal Combustion Engine
in Theory and Practice Vol. II: Combustion,
Fuels, Materials, Design 2nd ed., The M.I.T.
Pres, 1985.
4. Boysal, A. ve Rahnejat, H., “A Torsional
Vibration Analysis of a Multi-Body Single
Cylinder Internal Combustion Engine Model”,
Applied Mathematical Modelling, Cilt 21, 481-
493, 1997.
5. Brusa, E., Delprete, C. ve Genta, G., “Torsional
Vibration of Crankshafts: Effects of Non-constant
Moments of Inertia”, Journal of Sound and
Vibration, 205(2), 135-150, 1997.
6. Drew, S.J., Hesterman, D.C. ve Stone, B.J., “ The
Torsional Excitation of Variable Inertia Effects in
A Reciprocating Engine”, Mechanical Systems
and Signal Processing, Cilt 13, No 1, 125-144,
1999.
7. Metallidis P. ve Natiavas S., “Linear and
Nonlinear Dynamics of Reciprocating Engines”,
International Journal of Non-Linear
Mechanics, Cilt 38, 723-738, 2003.
8. Pasricha, M.S. ve Hashim, F.M., “Effect of the
Reciprocating Mass of Slider Crank Mechanism
on Torsional Vibrations of Diesel Engine
Systems”, Asean Journal on Science and
Technology for Development, Cilt 23, No 1, 71-
81, 2006.
9. Goudas, I. ve Natsiavas, S., “Non-linear
Dynamics of Engine Mechanism with a Flexible
Connecting Rod”, Proceedings of the
Institution of Mechanical Engineers, Part K:
Journal of Multi-body Dynamics, Cilt 218, 67-
80, 2004.
10. Wauer, J. ve Bührle, P., “Dynamics of a Flexible
Slider-crank Mechanism Driven by a Non-ideal
Source of Energy”, Nonlinear Dynamics, Cilt
13, 221-242, 1997.
11. Suh, C.H. ve Smith, C.G., “Dynamics Simulation
of Engine Mount Systems”, Society of
Automotive Engineers Inc., SAE-971940, 561-
572, 1997.
12. Wang, R., A Study of Vibration Isolation of
Engine Mount System, MsD Thesis, Concordia
University, The Department of Mechanical and
Industrial Engineering, 2005.
13. Tao, J.S., Liui, G.R. ve Lam, K.Y., “Design
Optimization of Marine Engine Mount System”,
Journal of Sound and Vibration, Cilt 235, No
3, 477-494, 2000.
14. Kim, J.H. ve Lee, J.M., “Elastic Foundation
Effects on The Dynamic Response of Engine
Mount Systems”, Proc. Instn. Mech. Engrs Part
D: J Automobile Engineering, Vol. 214, 45-53,
2000.
15. Hoffman, D.M.W. ve Dowling, D.R., “Modeling
Fully Coupled Rigid Engine Dynamics and
Vibrations,” 1999 SAE Noise and Vibrations
Conference, Vol. 2, Traverse City, MI,
Warrendale, PA, 747–755 1999.
16. Hadi, R., The Identification of The Inertial
Characteristics of An ICE Through Steady
State Vibration Measurement, PhD. Thesis,
Wayne State University, Mechanical
Engineering, 2002.
17. Hoffmann, D.M.W. ve Dowling, D.R., “Fully
Coupled Rigid Internal Combustion Engine
Dynamics and Vibration: Part I Model
Development”, Journal of Engineering for Gas
Turbines and Power, Cilt 123, 677-684, 2001.
18. Rideout, D.G., Stein, J.L. ve Louca, L.S.,
“Systematic Assessment of Rigid Internal
Combustion Engine Dynamic Coupling”,
Tek Silindirli Bir Dizel Motorunun Dinamik ve Titreşim Analizleri E. Öztürk ve H. Karabulut
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 27, No 3, 2012 499
Journal of Engineering for Gas Tubines and
Power, Cilt 130, 1-12, 2008.
19. Hesterman, D.C. ve Stone, B.J., “A Systems
Approach to the Torsional Vibration of Multi
Cylinder Reciprocating Engines and Pumps”,
Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical
Engineering Science, Cilt 208, 395-408, 1994.
20. Zweiri, Y.H., Whildborne, J.F. ve Seneviratne,
L.D., “Detailed Analytical Model of A Single-
Cylinder Diesel Engine in The Crank Angle
Domain”, Proceedings of the Institution of
Mechanical Engineers, Part D: Journal of
Automobile Engineering, Cilt 215, 1197-1216,
2001.
21. Guzzomi, A.L., Hesterman, D.C. ve Stone, B.J.,
‘The Effect of Piston Friction on Engine Block
Dynamics’, Proceedings of the Institution of
Mechanical Engineers, Part K: Journal of
Multi Body Dynamics, Cilt 221, 277-289, 2007.
22. Rezeka, S.F., A Mathematical Model of
Reciprocating Combustion Engine Dynamics
for The Diagnosis of Deficient Energy
Conversion, PhD. Thesis, Wayne State
University, Mechanical Engineering, 1984.
23. Patil, A.B. ve Ranade, N.S., “Computer
Simulation of an I.C. Engine During Cranking by
a Starter Motor”, SAE International:
International Congres and Exposition,
Michigan, SAE-930626, 89-95, 1993.
24. Karaçay, T., Eroğlu, M., Aktürk, N., “An
Investigation Into Ride Characteristics of Two
Degree of Freedom System Quarter Car Moving
on a Rough Surface”, J. Fac. Eng, Arch. Gazi
Univ., Cilt 18, No 4, 1-13, 2003.
25. Choi, S.B. ve Song, H.J., “Vibration Control of a
Passenger Vehicle Utilizing a Semi-active ER
Engine Mount”, Vehicle System Dynamics,
37(3), 193-216 (2002).
26. Foumani, M.S., Khajepour, A. ve Durali, M.,
“Optimization of Engine Mount Characteristics
Using Experimental/Numerical Analysis”,
Journal of Vibration and Control, 9, 1121-
1139, 2003.
27. Hillis, A., J., Harrison, A.J.L. ve Stoten, D.P., “A
Comparision of Two Adaptive Algoritms for The
Control of Active Engine Mounts”, Journal of
Sound and Vibration, Cilt 286, 37-54, 2005.
28. Jazar, G.N., Houim, R., Narimani, A. ve
Golnaraghi, M.F., “Frequency Response and
Jump Avoidance in A Nonlinear Passive Engine
Mount”, Journal of Vibration and Control, Cilt
12, No 11, 1205-1237, 2006.
29. Golnaraghi, M.F. ve Jazar, G.N., “Development
and Analysis of a Simplified Nonlinear Model of
Hydrolic Engine Mount”, Journal of Vibration
and Control, 7, 495-526 2001.
30. Christopherson, J. ve Jazar, G.N., “Dynamics
Behaviour Comparision of Passive Hydrolic
engine Mounts, Part 1: Mathematical Analysis”,
Journal of Sound and Vibration, Cilt 290,
1040-1070, 2006.
31. Lee, Y.W. Ave Lee, C.W., “Dynamic Analysis
and Control of an Active Engine Mount System”,
Proc. Instn. Mech. Engrs. Part D: J
Automobile Engineering, Vol. 216, 921-931,
2002.
32. Hoffmann, D.M.W., In-line internal
combustion engine dynamics and vibration,
Ph. D. Thesis, The University of Michigan, 1999.
33. Palavan, S., Pistonlu Makinalar Dinamiği,
İ.T.Ü. Makine Fakültesi Ofset Atölyesi, 36-45,
1975.
34. Karabulut, H., “Dynamic model of a two-cylinder
four-stroke internal combustion engine and
vibration treatment”, Int. J of Engine Research,
2012. doi:10.1177/1468087412442618.
35. Öztürk, E., İçten yanmalı motorlarda
titreşimlerin incelenmesi, Doktora Tezi, Gazi
Üniversitesi Fen Bilimleri Enstitüsü, 2011.

Thank you for copying data from http://www.arastirmax.com