Buradasınız

ÇOK KULLANIMLI VE ZAMAN PENCERELİ ARAÇ ROTALAMA PROBLEMİ İÇİN BİR MATEMATİKSEL MODEL

A MATHEMATICAL MODEL FOR THE VEHICLE ROUTING PROBLEM WITH TIME WINDOWS AND MULTIPLE USE OF VEHICLES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, the vehicle routing problem with time windows and multiple use of vehicles (VRP_TW_MUV) which is the generalized version of the classic vehicle routing problem, is considered. Unlike the classic Vehicle Routing Problem, vehicles are allowed to use more than one route in the VRP_TW_MUV. The VRP_TW_MUV is encountered usually in the distribution systems in which the product‟s shelf-life is short or duration of the distribution is short. Although, the VRP_TW_MUV is often encountered in practice, there are very few studies in literature. In this study, a mathematical model proposed for the VRP_TW_MUV. The proposed mathematical model is compared in terms of time to reach the best solution on the test problems of various sizes derived from the literature.
Abstract (Original Language): 
Bu çalışmada klasik Araç Rotalama Problemi‟nin (ARP) genelleştirilmiş bir hali olan Çok Kullanımlı ve Zaman Pencereli Araç Rotalama Problemi (ÇK_ZP_ARP) dikkate alınmıştır. ÇK_ZP_ARP‟de klasik ARP‟den farklı olarak araçların birden fazla rotada kullanılmasına izin verilmektedir. ÇK_ZP_ARP ile genellikle raf ömrünün kısa olduğu ürünlerin dağıtımının yapıldığı ya da dağıtım süresinin kısa olduğu sistemlerde karşılaşılmaktadır. Pratikte sıklıkla karşılaşılan bir problem olmasına rağmen, ÇK_ZP_ARP ile ilgili literatürde çok az sayıda çalışma bulunmaktadır. Bu çalışmada, ÇK_ZP_ARP için bir karma tamsayılı doğrusal programlama modeli önerilmiştir. Önerilen matematiksel model, literatürden türetilen değişik boyutlarda test problemleri üzerinde en iyi çözüme ulaşma zamanı açışından karşılaştırılmış ve sonuçları sunulmuştur.
569
576

REFERENCES

References: 

1. Toth, P., Vigo, D., The Vehicle Routing Problem, SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2002.
2. Azi, N., Gendreau, M., Potvin, J-Y., “An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles”, European Journal of Operational Research, 202, 756-763, 2010.
3. Salhi, S., The integration of routing into the location-allocation and vehicle composition problems, Ph.D. Thesis, University of Lancaster, 198–208, 1987.
4. Fleischmann, B., “The vehicle routing problem with multiple use of vehicles”, Working paper, Fachbereich Wirschaftswissenschaften, Universitat Hamburg, 1990.
5. Brandão, J.C.S., Mercer, A., “The multi-trip vehicle routing problem”, Journal of the Operational Research Society, 49, 799–805, 1998.
6. Olivera, A., Viera, O., “Adaptive memory programming for the vehicle routing problem with
multiple trips”, Computers & Operations Research, 34, 28–47, 2007.
7. Petch, R.J., Salhi, S., “A GA based heuristic for the vehicle routing problem with multiple trips.” Journal of Mathematical Modelling and Algorithms, 6, 591–613, 2007.
8. Petch, R.J., Salhi, S., “A multi-phase constructive heuristic for the vehicle routing problem with multiple trips”, Discrete Applied Mathematics, 133, 69–92, 2004.
9. Taillard, É.D., Laporte, G., Gendreau, M., “Vehicle routing with multiple use of vehicles”, Journal of the Operational Research Society, 47, 1065–1070, 1996.
10. Brandão, J.C.S., Mercer, A., “A Tabu search algorithm for the multi-trip vehicle routing and scheduling problem” European Journal of Operational Research, 100, 180–191, 1997.
11. Azi, N., Gendreau, M., Potvin, J.-Y., “An exact algorithm for a single vehicle routing problem with time windows and multiple routes”, European Journal of Operational Research, 178, 755–766, 2007.
12. Miller, C. E., Tucker, A. W., Zemlin, R. A., “Integer programming formulations and traveling salesman problems”, Journal of the ACM, 7, 326-329, 1960.
13. Kulkarni, R. V., Bhave, P. R., “Integer programming formulations of vehicle routing problems”, European Journal of Operational Research, 20, 58-67, 1985.
14. Desrochers, M., Laporte, G., “Improvements and extensions to the Miller–Tucker–Zemlin subtour elimination constraints”, Operations Research Letters, 10, 27-36, 1991.
15. Kara, İ., Laporte, G., Bektas, T., “A note on the lifted Miller–Tucker–Zemlin subtour elimination constraints for the capacitated vehicle routing problem”, European Journal of Operational Research, 158, 793-795, 2004.
16. Kara, İ., “Two indexed polynomial size formulations for vehicle routing problems”, Technical Report, Ankara-Türkiye, 2008.
17. Solomon, M.M., “Algorithms for the vehicle routing and scheduling problems with time window constraints”. Operations Research, 35, 254–265, 1987.

Thank you for copying data from http://www.arastirmax.com