Buradasınız

KARE GEOMETRİNİN HİDROMEKANİK DERİN ÇEKME YÖNTEMİ İLE ŞEKİLLENDİRİLEBİLİRLİĞİNİN DENEYSEL İNCELENMESİ

EXPERIMENTAL INVESTIGATION ON THE FORMABILITY OF SQUARESHAPED CUPS BY HYDROMECHANICAL DEEP DRAWING PROCESS

Journal Name:

Publication Year:

Abstract (2. Language): 
Hydromechanical deep drawing (HDD), as an advanced forming technology, is gaining continuous interest in the sheet metal forming industry. Current research, investigates the formability of copper (Cu) and Erdemir 6112 (DC01) sheet blanks through hydromechanical deep drawing. Experiments have been carried out using custom designed and built hydromechanical forming test setup. The effects of process parameters such as chamber pressure (pi = 10 MPa, 20 MPa, 30 MPa), die radius (r = 4 mm, 6 mm, 8 mm), punch velocity (v = 6 mm/s, 12 mm/s, 18 mm/s), sheet metal thickness (t0 = 0,5 mm, 0,8 mm, 1,0 mm) and initial blank diameter (D = 120 mm, 130 mm, 140 mm) have been evaluated for the formability of square cup. In experimental studies; the limit drawing ratio of 2.6 was achieved in a single step operation for both material types. The results showed that smaller thickness variations for square-shaped cups were obtained in hydromechanical deep drawing process compared to the conventional deep drawing process.
Abstract (Original Language): 
Hidromekanik derin çekme prosesi, sac metal malzemelerin şekillendirilmesinde giderek artan öneme sahip bir ileri şekillendirme teknolojisidir. Bu çalışmada; hidromekanik derin çekme yöntemiyle, Bakır (Cu) ve Erdemir 6112 (DC01) sac metallerin kare geometrili kap olarak şekillendirilebilirliği araştırılmıştır. Deneysel çalışmalar; çalışmanın amacına yönelik tasarlanan ve imal edilen bir hidromekanik derin çekme deney düzeneğinde gerçekleştirilmiştir. Hidromekanik derin çekmede; kalıp içindeki hidrolik sıvı basıncının (pi = 10 MPa, 20 MPa, 30 MPa), kalıp kavisinin (r = 4 mm, 6 mm, 8 mm), şekillendirme hızının (v = 6 mm/s, 12 mm/s, 18 mm/s), sac malzeme kalınlığının (t0 = 0,5 mm, 0,8 mm, 1,0 mm) ve başlangıç sac çapının (D = 120 mm, 130 mm, 140 mm) şekillendirilebilirlik üzerindeki etkileri deneysel olarak incelenmiştir. Deneysel çalışmalarda; hidromekanik derin çekme yönteminin kullanılmasıyla, Bakır ve Erdemir 6112 sac malzeme için tek seferde 2,6 çekme oranına ulaşılabilmiştir. Şekillendirilen ürünlerin klasik derin çekme yöntemine göre daha homojen bir kalınlık dağılımı gösterdiği tespit edilmiştir.
33
41

REFERENCES

References: 

1. Zhang, S.H., Danckert, J.; “Development of
hydro-mechanical deep drawing”, Journal of
Materials Processing Technology, 83, 14-25,
1998.
2. Lang, L., Danckert, J., Nielsen, K.B., Zhou, X.;
“Investigation into the forming of a complex cup
locally constrained by a round die based on an
innovative hydromechanical deep drawing
method”, Journal of Materials Processing
Technology, 167, 191-200, 2005.
3. Lang, L.H., Danckert, J., Nielsen, K.B.;
“Investigation into the effect of pre-bulging
during hydromechanical deep drawing with
uniform pressure onto the blank”, International
Journal of Machine Tools & Manufacture, 44,
649–657, 2004.
4. Zhang, S.H., Nielsen, K. B., Danckert, J., Kang,
D.C., Lang, L.H., “Finite element analysis of the
hydromechanical deep-drawing process of
tapered rectangular boxes”, Journal of Materials
Processing Technology, 102, 1-8, 2000.
5. Tschaetsch H.; “Metal Forming Practice”,
Springer-Verlag Berlin Heidelberg, Germany,
172-184, 2006.
6. Dachang, K., Yu, C., Yongchao, X.;
“Hydromechanical deep drawing of superalloy
cups”, Journal of Materials Processing
Technology, 166, 243-246, 2005.
7. Zhang, S.H., Lang, L.H., Kang, D.C., Danckert,
J., Nielsen, K.B.; “Hydromechanical deepdrawing
of aluminium parabolic workpiecesexperiments
and numerical simulation”,
International Journal of Machine Tools &
Manufacture, 40, 1479-1492, 2000.
8. Qin,Y., Balendra, R.; “Design considerations for
hydromechanical deep drawing of sheet
components with concave features”, Journal of
Materials Processing Technology, 145, 163–
170, 2004.
9. Zhang, S.H., Jensen, M.R., Nielsen, K.B.,
Danckert, J., Lang, L.H.; Kang, D.C., “Effect of
anisotropy and prebulging on hydromechanical
deep drawing of mild steel cups”, Journal of
Materials Processing Technology, 142, 544–
550, 2003.
10. Hezam, L.M.A., Hassan, M.A., Hassab-Allah,
I.M., El-Sebaie, M.G., “Development of a new
process for producing deep square cups through
conical dies”, International Journal of Machine
Tools & Manufacture, 49, 773-780, 2009.
11. Khandeparkar, T., Liewald, M.;
“Hydromechanical deep drawing of cups with
stepped geometries”, Journal of Materials
Processing Technology, 202, 246-254, 2008.
12. Karaağaç, İ., Özdemir, A.; “The formability of
Erdemir 6112 sheet metal by the
hydromechanical deep drawing process”,
Journal of The Faculty of Engineering and
Architecture of Gazi University, 26:4, 841-850,
2011.
13. Bergkvist M.; “Fluid Cell Pressing in The
Aerospace Industry”; Hydroforming For
Advanced Manufacturing, Edited: Koç, M.,
Woodhead Publishing Limited and CRC Press
LLC, England, 315-334, 2008.
14. “Metal Forming Handbook – Schuler
GmbH”, Edited: Altan T., Springer, Germany,
166-168, 1998.
15. Karaağaç, İ. Özdemir A.; “The Experimental
investigation of sheet metal hydroforming
process parameters”, Ph.D. Thesis Gazi
University, Institute of Science and Technology,
2011.

Thank you for copying data from http://www.arastirmax.com