Buradasınız

YÜKSEK HIZ TRENLERİNİN ÇEVRE BİNALARDAKİ TİTREŞİM ETKİLERİNİN AZALTILMASI

MITIGATION OF THE EFFECTS OF VIBRATIONS INDUCED BY HIGH SPEED TRAINS ON SURROUNDING BUILDINGS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this paper, the goal is to primarily deal with the modeling of the railway traffic induced vibrations by using discrete computer models for analyzing related wave propagation problems with soil-structure interaction effects and mitigation of building responses by installation of wave barriers. Comprehensive parametric studies including the effects of localization and backfill material of trench barrier on the screening performance have been executed.
Abstract (Original Language): 
Bu çalışmanın öncelikli hedefi hızlı tren trafiğinin ürettiği zemin titreşimlerini, yapı-zemin etkileşiminin de hesaba katıldığı bir dalga yayılım problemi olarak değerlendirip, ayrık sayısal çözüm yöntemlerinden yararlanarak sistemin matematik modelini geliştirerek incelemek ve dalga bariyerlerinin yerleştirilmesi ile çevre yapılardaki etkilerinin azaltılmasına ilişkin çözümler sunmaktır. Dalga bariyerinin yalıtım performansı tesis edileceği yere ve iç dolgu malzemesine göre kapsamlı parametrik çalışmalar yürütülerek araştırılmıştır.
321
332

REFERENCES

References: 

1. Fiala, P., Degrande, G., Augusztınovicz, F.,
Numerical Modelling of Ground Borne Noise and
Vibration in Buildings due to Surface Rail
Traffic, Journal of Sound and Vibration, 301,
718-738, 2007.
2. Auersch, L., The Effect of Critically Moving
Loads on the Vibrations of Soft Soils and Isolated
Railway Tracks, Journal of Sound and Vib.,
310, 587-607, 2008.
3. Ahmad, S., Al-Hussaini, T. M., Simplified
Design for Vibration Screening by Open and
Infilled Trenches, Journal of Geotechnical
Engineering, 117 (1), 67-88, 1991.
4. Celebi, E., Firat, S., Beyhan, G., Cankaya, I.,
Vural, I., Kirtel, O., Field Experiments on Wave
Propagations and Vibration Isolation by Using
Wave Barriers, Soil Dynamics and Earthquake
Engineering, 29 (5), 824-833, 2009.
5. Forchap, E., Verbic, B., Wave Propagation and
Reduction of Foundation Vibrations, Berg-
Verlag GmbH, Bochum, 165-178, 1994.
6. Baker, J. M., An Experimental Study on
Vibration Screening by In-Filled Trench Barriers,
M. S. Thesis, State University of New York at
Buffalo, USA, 1994.
7. Thau, S. A., Pao, Y. H., Diffraction of Horizontal
Hear Waves by a Parabolic Cylinder and
Dynamic Stress Concentrations, J. Appl. Mech.,
ASME, 785–92, 1966.
8. Fuyuki, M., Matsumoto, Y., Finite Difference
Analysis of Rayleigh Wave Scattering at a
Trench, Bull. of Seism. Society of America, 70
(6), 2051–69, 1980.
9. Barber, J. R., Surface Displacements due to a
Steadily Moving Point Force, J. Appl. Mech.,
63, 245–251, 1996.
10. Yang, B. Y., Hung, H. H., A 2.5D Finite/Infinite
Element Approach for Modelling Visco-Elastic
Bodies Subjected to Moving Loads, Int. J.
Numer. Meth. Eng., 240, 1317–1336, 2001.
11. Celebi, E., Schmid, G., Investigation of Ground
Vibrations Induced by Moving Loads,
Engineering Structures, 27, 1981-1998, 2005.
12. Karlström, A., Boström, A., Efficiency of
Trenches along Railways for Trains Moving at
Sub- or Supersonic Speeds, Soil Dynamics and
Earthquake Engineering, 27 (7), 625–641,
2007.
13. Kirtel, O., Goktepe, F., Celebi, E., Mitigation of
Structural Responses to Train Induced Vibrations
by Using Open and In-Filled Trenches, 9th
International Congress on Advances in Civil
Engineering, KTU, Trabzon, Turkey, 2010.
14. Verbic, B., Über die rechnerische Untersuchung
des Spannungs und Verformungszustandes im
Oberbau und Unterbau der festen Fahrbahn
infolge einer realen bewegter Last., Bericht, Ruhr
Universität Bochum, 1996.
15. Huber, G., Erschütterungsausbreitung beim
Rad/Schiene-system, Veröffentlichungen 115,
Institutes für Bodenmechanik und Felsmechanik
der Universität Fridericiana, Karlsruhe, 1988.
16. Tosecky, A., Nümerische Untersuchung der
Erschüterrungsausbreitung infolge bewegter
Lasten auf einem Feste Fahrbahn-System mittels
der Methode der dünnen Schichten/Methode der
flexiblen Volumen, Diploma thesis, Ruhr
Universität, Bochum, 2001.
17. Brinkgreve, R. B. J., Al-Khoury, R., Bakker, K.
J., Bonnier, P. G., Brand, P. J. W., Broere, W.,
Burd, H. J., Soltys, G., Vermeer, P. A., Haag, D.
D., Plaxis Finite Element Code for Soil and Rock
Analyses, Published and Distributed by A.A.
Balkema Publisher, The Netherlands, 2002.
18. Kuhlemeyer, R. L., Lysmer, J., Finite Element
Method Accuracy for Wave Propagation
Problems, Journal of Soil Mechanics and
Foundations Division, ASCE, 99 (SM5), 421-
427, 1973.
19. Courant, R., Friedrichs, K., Lewy, H., On the
Partial Difference Equations of Mathematical
Physics, IBM Journal, 11, 215–234, 1967.
E. Çelebi ve ark. Yüksek Hız Trenlerinin Çevre Binalardaki Titreşim Etkilerinin Azaltılması
332 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 2, 2013
20. Lysmer, J., Kuhlemeyer, R. L., Finite Dynamic
Model for Infinite Media, Journal of the
Engineering Mechanics Division, 95, 859–875,
1969.
21. Wolf, J. P., Song, C., Dynamic Stiffness Matrix
of Unbounded Soil by Finite Element Multi-Cell
Cloning, Ertq. Eng. and Structural Dyn., 23,
233-250, 1994.
22. Rosset, J. M., Kausel, E., Dynamic Soil-Structure
Interaction, Proc. 2nd Int. Conference on Num.
Methods In Geomechanics, Blacksburg,
Virginia, 1976.
23. Lysemer, J., Ostadan, F., Tabatabaie, M.,
Vahdani, S., Tajirian, F., SASSI A System for
Analysis of Soil–Structure Interaction,
Theoretical manual, 1988.
24. Al-Hussaini, T. M., Ahmad, S., Design of Wave
Barriers for Reduction of Horizontal Ground
Vibration, Journal of Geotechnical
Engineering, 117 (4), 616–636, 1991.

Thank you for copying data from http://www.arastirmax.com