Buradasınız

Ag/ALUMİNA KATALİZÖRLERİ ÜZERİNDE ÜRENİN BOZUNMASININ İNCELENMESİ

THE INVESTIGATION OF UREA DECOMPOSITION OVER Ag/ALUMINA CATALYSTS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The NOx gases which are released from diesel vehicles can be reduced to N2 gas with selective catalytic reduction (SCR) reactions. The yield of these reactions are majorly related to the reducing agent. Both urea and its’ decomposition/hydrolysis compounds which are isocyanic asid (HNCO) and ammonia (NH3) can be used SCR reactions. Therefore, urea is an attractive reducing agent recently. Ag/Al2O3 catalysts have an important role for NOx reduction. The decomposion and hydrolysis compounds of urea on the %1 Ag/Al2O3 and %2 Ag/Al2O3 catalysts which are prepared by sol-gel method were investigated by using FTIR. The experimental studies were carried out between 100-400°C temperature in the presence of helium. As a result of the analyses of FTIR spectra, NH3, NH4 +, -CNO, melamine and CO2 were dedected as the decomposition and hydrolysis compounds of urea on the catalysts. Besides that, OH, CH, NH and C=O stretching vibration bands were also observed. NH4 + compound was not observed at any temperature on the %1 Ag/Al2O3 catalyst however, it was observed at the temperatures of 100 and 250 °C on the %2 Ag/Al2O3 catalyst. Ammonia, which is a decompositon and hydrolysis compound of urea, was observed on both catalysts at all temperatures and times. Isocyanate (-CNO), which is a decompositon compound of urea, gave its most intensive peak at the temperature of 200°C on %1 Ag/Al2O3 catalyst and at the temperature of 250°C on %2 Ag/Al2O3 catalyst.
Abstract (Original Language): 
Dizel araçlardan çevreye salınan zararlı NOx gazları, seçici katalitik indirgeme (SCR) reaksiyonları ile N2 gazına dönüştürülebilmektedir. Bu reaksiyonların verimi, kullanılan indirgen maddeye önemli ölçüde bağlıdır. Ürenin hem kendisi hem de bozunma/hidroliz bileşikleri olan izosiyanik asit (HNCO) ve amonyak (NH3) SCR reaksiyonlarında kullanılabilmektedir. Bundan dolayı, üre son zamanlarda ilgi çeken bir indirgen maddedir. NOx indirgenmesinde Ag/Al2O3 katalizörleri önemli bir yere sahiptir. Sol-jel yöntemi kullanılarak hazırlanan %1 Ag/Al2O3 ve %2 Ag/Al2O3 katalizörü üzerinde ürenin bozunma ve hidroliz bileşikleri FTIR cihazı kullanılarak incelenmiştir. Deneysel çalışmalar, helyum ortamında 100–400°C sıcaklık aralığında gerçekleştirilmiştir. FTIR spektrumlarının analizi sonucunda katalizörler üzerinde ürenin bozunma ve hidroliz bileşikleri olarak NH3, NH4 +, -CNO, melamin ve CO2 tespit edilmiştir. Bunun yanı sıra OH, CH, NH ve C=O gerilme titreşim bantları da gözlenmiştir. NH4 + bileşiği %2 Ag/Al2O3 katalizörü üzerinde 100 ve 250 °C sıcaklıklarda gözlenirken, %1 Ag/Al2O3 katalizörü üzerinde hiçbir sıcaklıkta tespit edilmemiştir. Ürenin bozunma ve hidroliz bileşiği olan amonyak her iki katalizör üzerinde de çalışılan bütün sıcaklık ve zamanlarda gözlenmiştir. Ürenin bozunma bileşiği olan izosiyanat (-CNO), %1 Ag/Al2O3 katalizörü üzerinde en şiddetli pikini 200°C sıcaklıkta, %2 Ag/Al2O3 katalizörü üzerinde 250°C sıcaklıkta vermiştir.
523
532

REFERENCES

References: 

1. Miyadera, T., ”Alumina-Supported Silver
Catalysts for the Selective Reduction of Nitric
Oxide with Propene and Oxygen-Containing
Organic Compounds”, Applied Catalysis B:
Environmental, Cilt 2, No 2-3, 199-205, (993.
2. Bethke, K.A., and Kung, H. H.”Supported Ag
Catalysts for the Lean Reduction of NO with
C3H6”, Journal of Catalysis, Cilt 72, 93-102,
1997.
3. Ueda, A., Oshima, T., and Haruta, M.,”
Reduction of Nitrogen Monoxide with Propene in
the Presence of Oxygen and Moisture over Gold
Supported on Metal Oxides”, Applied Catalysis
B: Environmental , Cilt12, No 2-3, 81-93,
1997.
4. Kramlich, J.C and Linak, W.P. ”Nitrous Oxide
Behavior in the Atmosphere, and in Combustion
and Industrial Systems”, Progress in Energy
and Combustion Science, Cilt 20, No 2, 149–
202, 1994.
5. Van Kooten, W.E.J, Krijnsen, H.C, Van Den
Bleek, C.M, Calis, H.P.A, “Deactivation of
Zeolite Catalysts Used for NOx Removal”,
Applied Catalysis B: Environmental, Cilt 25,
No 2–3, 125–135, 2000.
6. Long, R.Q., Yang, R.T, “Characterization of Fe-
ZSM5 Catalyst for Selective Catalytic Reduction
Nitric Oxide by Ammonia”, Journal of
Catalysis, Cilt 194, 80-90, 2000.
7. Richter, M., Trunschke, A., Bentrup, U.,
Brzezinka, K., Schreier, E., Schneider M. , Pohl,
M. , Fricke, R. “Selective Catalytic Reduction of
NO by Ammonia over Egg-shell MnOx/NaY
Composite Catalysts”, Journal of Catalysis, Cilt
206, 98-113, 2002.
H. M. Taşdemir, N. Yaşyerli Ag/Alumina Katalizörleri Üzerinde Ürenin Bozunmasının İncelenmesi
532 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 3, 2013
8. Seker, E. , Yasyerli, N. , Gulari, E. , Lambert, C. ,
Hammerle, R.H , “NO Reduction by Urea under
Lean Conditions over Single Sol-Gel Cu/Alumina
Catalyst” , Journal of Catalysis, Cilt 208, 15–20,
2002.
9. He, H., Li, Y., Zhang, X., Yu, Y., Zhang, C., “
Precipitable Silver Compound Catalysts for
Selective Catalytic Reduction of NOx by
Ethanol”, Applied Catalysis A: General, Cilt
375, 258-264,2010.
10. Dong, H., Shuai, S., Li, R., Wang, J., Shi, X., He,
H., “ Study of NOx Selective Catalytic Reduction
by Ethanol over Ag/Al2O3 Catalyst on a HD
Diesel Engine”, Chemical Engineering Journal,
Cilt 135, 195-201,2008.
11. Breen, J.P., Burch, R., Hill, C.J., “ NOx Storage
During H2 Assisted Selective Catalytic Reduction
of NOx Reaction over a Ag/Al2O3 Catalyst”,
Catalysis Today, Cilt 145, 34-37, 2009.
12. Shimizu, K., Satsuma, A., “Hydrogen Assisted
Urea-SCR and NH3-SCR with Silver-Alumina as
Highly Active and SO2- Tolerant De-NOx
Catalysis”, Applied Catalysis B:
Environmental, Cilt77, 202-205, 2007.
13. Richter, M., Bentrup, U., Eckelt, R., Schneider
M. , Pohl, M.M. , Fricke, R., “ The Effect of
Hydrogen on the Selective Catalytic Reduction of
NO in Excess Oxygen over Ag/Al2O3”, Applied
Catalysis B: Environmental, Cilt 51, 261-274,
2004.
14. Seker, E., Cavataio, J., Gulari, E.,
Lorpongpaiboon, P., Osuwan, S., “Nitric Oxide
Reduction by Propene over Silver/Alumina and
Silver-Gold/Alumina Catalysts: Effect of
Preparation Methods”, Applied Catalysis A:
General, Cilt 183, 121-134, 1999.
15. Zhang, C., He, H., Shuai, S., Wang, J., “Catalytic
Performance of Ag/Al2O3-C2H5OH-Cu/Al2O3
System for the Removal of NOx from Diesel
Engine Exhaust”, Environmental Pollution, Cilt
147, 415-421, 2007.
16. Liu, Z., Li, J., Hao, J., “Selective Catalytic
Reduction of NOx with Propene over SnO2/Al2O3
Catalyst”, Chemical Engineering Journal, Cilt
165, No 1, 420-425, 2010.
17. Eichelbaum, M., Farrauto, R. J., Castaldi, M.J.,”
The Impact of Urea on the Performance of Metal
Exchanged Zeolite for the Selective Catalytic
Reduction of NOx Part I. Pyrolysis and
Hydrolysis of Urea over Zeolite Catalysts”,
Applied Catalysis B: Environmental, Cilt 97,
No 1, 90-97, 2010.
18. Lundström, A., Snelling, T., Morsing, P.,
Gabrielson, P., Senar, E., Olsson, L., “Urea
Decomposition and HNCO Hydrolysis Studied
over Titanium Oxide, Fe-Beta and γ-Alumina”,
Applied Catalysis B: Environmental, Cilt 106,
273-279, 2011.
19. Bernhard, A.M., Peitz, D., Elsener, M., Wokaun,
A., Kröcher, O., “Hydrolysis and Thermolysis of
Urea and Its Decomposition Byproducts Biuret,
Cyanuric Acid and Melamine over Anatase
TiO2”, Applied Catalysis B: Environmental,
Cilt 115-116, 129-137, 2012.
20. Şahin, A., Aktan, H., Balbaşı, M., Ar, İ.,
“Synthesis and Characterization of Phosphonated
Poly(Vinyl Alcohol) Based Membrane with
Silica Support” , J. Fac. Eng. Archit. Gazi
Univ., Cilt 25, No 4, 693-699, 2010.
21. Şahin, A., Balbaşı, M., Ar, İ., “Synthesis and
Characterization of Sulphonated
Polystyrene/Polyvinyl Alcohol Composite
Membrane with Boric Acid and Boron Phosphate
Support” , J. Fac. Eng. Archit. Gazi Univ., Cilt
24, No 1, 137-144, 2009.
22. Yaşyerli, S., Aktaş, Ö., “MCF Supported V-Mo-
Nb Catalysts Prepared by Dırect Hydrothermal
Synthesıs and Impregnatıon Methods for
Oxıdatıve Dehydrogenatıon of Propane”, J. Fac.
Eng. Archit. Gazi Univ., Cilt 27, No 1, 49-58,
2012.
23. Yasyerli, N., Tasdemir, M., “ FTIR Studies of
Urea Decomposition over Pt-Alumina and Cu-
Alumina Catalysts”, International Journal of
Chemical Reactor Engineering, Cilt 8, No 1,
A162, 2010.
24. Park, P.W., Boyer, C.L, “Effect of SO2 on the
Activity of Ag/γ-Al2O3 Catalysts for NOx
Reduction in Lean Conditions”, Applied
Catalysis B: Environmental, Cilt 59, No 1-2,
27-34, 2005.
25. Lowell, S., Shield,J. “Powder Surface Area and
Porosity”, Chapman and Hall, New York, A.B.D,
1984.
26. Sing, K.S.W, Haul, R.A.W, Pierotti, R.A.,
Siemieniewska, T., “Reporting Physisorption
Data for Gas/Solid Systems with Special
Reference to the Determination of Surface Area
and Porosity”, Pure & App. Chem., Cilt 57, No
4, 603-619, 1985.
27. Chen, L.F., Gonzalez, G., Wang, J.A, Norena,
L.E., Toledo, A., Castillo, S., Pineda, M.M.,
“Surfactant Control Synthesis of Pd/Ce0.6Zr0.4O2
Catalyst for NO Reduction by CO with Excess
Oxygen”, Applied Surface Science, Cilt 243,
319-328, 2005.
28. Li, Q., Zhao, N., Wei, W., Sun, Y., “Catalytic
Performance of Metal Oxide for the Synthesis of
Propylene Carbonate from Urea and 1,2
Propanediol”, Journal of Moleculer Catalysis
A: Chemical, Cilt 270, No 1-2, 44-49, 2007.
29. Li, G., Jones, C.A, Grassian, V.H, Larsen, S.C.,
“Selective Catalytic Reduction of NO2 with Urea
in Nanocrystalline NaY Zeolite”, Journal of
Catalysis, Cilt 234, No 2, 401-413, 2005
30. Seker, E. , Yasyerli, N. , Gulari, E. , Lambert, C. ,
Hammerle, R.H , “NOx Reduction by Urea under
Lean Conditions over Single Sol-Gel Pt/Alumina
Catalyst” , Applied Catalysis B:
Environmental, Cilt 37, No 1, 27–35, 2002.

Thank you for copying data from http://www.arastirmax.com