Buradasınız

ÖZ-DÜZENLEMELİ HARİTA AĞLARI İLE K-ORTALAMA KÜMELEME ANALİZİNİN KARŞILAŞTIRILMASI: TÜKETİCİ PROFİLLEME ÖRNEĞİ

COMPARING SELF ORGANIZING MAPS WITH K-MEANS CLUSTERING: AN APPLICATION TO CUSTOMER PROFILING

Journal Name:

Publication Year:

Author NameUniversity of Author
Abstract (2. Language): 
Due to the increasing competitiveness in shopping environments, profiling consumers becomes critical for retailers and their managers. However, researchers investigated the consumer profiling based on either the shopping motivations, or the shopping values, or the consumers’ decision making styles separately mostly by using K-means clustering method in the literature. In this sense, a research investigating the shopping motivations and values, and consumers’ decision making styles together with a new clustering method, which overcomes the limitations of the K-means clustering method, is warranted in the literature. In this study, we used an Artificial Intelligence based technique, called Self Organizing Map (SOM), to profile consumers based upon their shopping motivations and values, and decision making styles. Our results also demonstrated that SOM’s total within cluster variance is smaller than K-means’s, indicating that SOM clustering is better than the K-means when the sample is non-normally distributed. The paper profiles clusters on demographics and ethnic group membership to examine similarities and differences among cluster members.
Abstract (Original Language): 
Alışveriş ortamlarında artan rekabet nedeniyle tüketici profilleme, perakendeciler ve yöneticiler için kritik hale gelmiştir. Ancak araştırmacılar, tüketici profillemeyi alışveriş motivasyonları, alışveriş değerleri veya tüketicilerin karar verme stilleri bazında ayrı ayrı ve çoğunlukla K-ortalama kümeleme yöntemini kullanarak araştırmışlardır. Bu anlamda, tüketicilerin alışveriş motivasyon ve değerlerini ve karar verme stillerini K-ortalamalar kümeleme yönteminin kısıtlarının üstesinden gelen yeni bir kümeleme yöntemi kullanarak araştıran bir çalışmanın literatürde önemi büyüktür. Bu çalışmada, tüketicilerin alışveriş motivasyon ve değerleri ile birlikte karar verme stillerine dayalı profilini çıkarmak için Öz-düzenlemeli Harita Ağları olarak adlandırılan yapay zeka tabanlı bir teknik kullanılmıştır. Elde edilen sonuçlar, Öz-düzenlemeli Harita Ağlarının K-ortalama yöntemine göre daha iyi olduğunu göstermektedir. Bu araştırma, küme üyeleri arasındaki benzerlik ve farklılıkları incelemek amacıyla demografik ve etnik grup üyelikleri temelinde tüketici profillerini oluşturur.
723
731

REFERENCES

References: 

1. Wickliffe, V. P., “Refinement and re-assessment of the consumer decision-making style instrument”, Journal of Retailing and Consumer Services, Cilt 11, 9–17, 2004.
2. Rohm, A.J. ve Swaminathan, V., “A typology of online shoppers based on shopping motivations”, Journal of Business Research, Cilt 57, 748– 757, 2004.
3. Arnold, M.J. ve Reynolds, K.E., “Hedonic shopping motivations”, Journal of Retailing, Cilt 79, Vol 2, 1–20, 2003.
4. Jamal, A., Davies F., Chudry, F. ve Al-Marri, M., “Profiling consumers: A study of Qatari consumers’ shopping motivations”, Journal of Retailing and Consumer Services, Cilt 13, 67–80, 2006.
5. Babin, B.J., Darden, W.R. ve Griffin, M., “Work and/or fun: measuring hedonic and utilitarian shopping value”, Journal of Consumer Research, Cilt 20, No 4, 644–656, 1994.
6. Kiang, M.Y. ve Fisher, D.M., “Selecting the right MBA schools: An application of self-organizing
map networks”, Expert Systems with Applications, Cilt 35, No 3, 946-955, 2008.
7. Mostafa, M. M., “Shades of green: A psychographic segmentation of the green consumer in Kuwait using self-organizing maps”, Expert Systems with Applications, Cilt 36, No 8, 11030-11038, 2009.
8. Kiang, M.Y., Hu M. Y., Dorothy M. ve Fisher D.M., “An extended self-organizing map network for market segmentation—a telecommunication example”, Decision Support Systems, Cilt 42, 36– 47, 2006.
9. Kim, K.J. ve Ahn, H., “A recommender system using GA K-means clustering in an online shopping market”, Expert Systems with Applications, Cilt 34, No 2, 1200-1209, 2008.
10. Vellido, A., Lisboa, P.J.G. ve Meehan, K., “Segmentation of the on-line shopping market using neural networks”, Expert Systems with Applications, Cilt 17, No 4, 303-314, 1999.
11. Demirhan, A. ve Guler, I., “Image segmentation using self-organizing maps and gray level co-occurrence matrices”, Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 25, No 2, 285-291, 2010.
12. Alpdogan, Y. ve Bilge, H.S., “Classification of course contents by using self-organizing maps”, Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 24, No 2, 303-310, 2009.
13. Huang, J. J., Tzeng, G. H., ve Ong, C. S., “Marketing segmentation using support vector clustering”, Expert Systems with Applications, Cilt 32, No 2, 313–317, 2007.
14. Granzow, M., Berrar, D., Dubitzky, W., Schuster, A., Azuaje, F. J., ve Eils, R., “Tumor classification by gene expression profiling: Comparison and validation of five clustering methods”, SIGBIO Newsletter, Cilt 21, No 1, 16–22, 2001.
15. Delibasis, K. K., Mouravliansky, N., Matsopoulos, G. K., Nikita, K. S., ve Marsh, A., “MR functional cardiac imaging: Segmentation, measurement and WWW based visualisation of 4D data”, Future Generation Computer Systems, Cilt 15, No 2, 185–193, 1999.
16. Martı´n-Guerrero, J. D., Palomares, A., Balaguer-Ballester, E., Soria-Olivas, E., Gómez-Sanchis, J., ve Soriano-Asensi, A., “Studying the feasibility of a recommender in a citizen web portal based on user modeling and clustering algorithms”, Expert Systems with Applications, Cilt 30, No 2, 299–312, 2006.
17. Sproles, G.B. ve Kendall, E.L., “A methodology for profiling consumers’ decision-making styles”, The Journal of Consumer Affairs, Cilt 20, No 2, 267–280, 1986.
18. Sproles, G. B., “From Perfectionism to Fadism: Measuring Consumers’ Decision-Making Styles”,
Öz-Düzenlemeli Harita Ağları İle K-Ortalama Kümeleme Analizinin Karşılaştırılması... H. İnce ve ark.
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 4, 2013 731
in Proceedings of American Council on Consumer Interest, 79-85, 1985.
19. Breining C., “State detection for hands-free telephone sets by means of fuzzy LVQ and SOM”, Signal Processing, Cilt 80, No 7, 1361-1372, 2000.
20. Yao, K.C., Mignotte, M., Collet, C., Galerne, P. ve Burel, G., “Unsupervised segmentation using a self-organizing map and a noise model estimation in sonar imagery”, Pattern Recognition, Cilt 33, No 9, 1575-1584, 2000.
21. Reynolds, K.E., Ganesh, J. ve Luckett M., “Traditional malls vs. factory outlets: comparing shopper typologies and implications for retail strategy”, Journal of Business Research, Cilt 55, 687– 696, 2002.
22. Gerbing, D. ve Anderson, J., “An updated paradigm for scale development incorporating undimensionality and its assessment”, Journal of Marketing Research, Cilt 25, No 2, 186-192, 1998.
23. Savas, S. ve Topaloglu, N., “Performance analysis of gsm networks with data mining method” Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 16, No 4, 741-751, 2011.
24. Vesanto, J., Himberg, J., Alhoniemi, E. ve Parhankangas, J., SOM Toolbox for Matlab 5, Helsinki University of Technology, Helsinki, Finland, 2000.

Thank you for copying data from http://www.arastirmax.com