Buradasınız

R.DELEMAR’IN ÜREMESİ VE LİPAZ ÜRETİMİ ÜZERİNE KARIŞTIRMA VE HAVALANDIRMA HIZLARININ ETKİSİNİN GLUKOZ VEYA MELAS SAKKAROZU VE PFR İÇEREN ORTAMLARDA ARAŞTIRILMASI

EFFECTS OF STIRRING AND AERATION RATES ON LIPASE PRODUCTION AND GROWTH OF R. DELEMAR IN THE MEDIA CONTAINING GLUCOSE OR MOLASSES SUCROSE AND PFC

Journal Name:

Publication Year:

Abstract (2. Language): 
Lipases (triacylglycerol hydrolases) are hydrolytic enzymes that can catalyze the hydrolysis of the ester bond of long-chain acylglycerols at the oil-water interface. The effects of stirring rate, aeration rate, and the amount of perfluorocarbon (PFC), as an oxygen carrier, in the nutrient media containing glucose or molasses sucrose as main carbon sources were investigated in a batch bioreactor. The maximum lipase activities in the media containing glucose or molasses sucrose as main C source were found to be 43.0 U/L and 102.83 U/L, respectively, at the stationary phase of growth (120th hour of fermentation), at 150 and 200 revolution per minute stirring rates, respectively. The effect of aeration rate on lipase activity was investigated in range of 1-4 vvm. The maximum lipase activities in the media containing glucose or molasses sucrose and 10% PFC were determined as 102.67 U/L, 171.20 U/L, respectively, at 2 vvm aeration rate.
Abstract (Original Language): 
Lipazlar (triacylglycerol hydrolases) yağ-su arayüzeyinde uzun zincirli açilgliserollerin ester bağlarının hidrolizini katalizleyen hidrolitik enzimlerdir. Rhizopus delemar’ ın lipaz üretimi için karıştırma hızı, havalandırma hızı ve oksijen taşıyıcı olarak kullanılan perflorokarbon (PFR) miktarının etkisi karbon kaynağı olarak glukoz veya melas sakkarozu kullanılan ortamlarda kesikli bir biyoreaktörde incelenmiştir. Maksimum lipaz aktiviteleri, ana karbon kaynağı olarak glukoz veya melas sakkarozu içeren ortamlarda sırasıyla 43,0 U/L ve 103,12 U/L olarak 150 ve 200 devir/min karıştırma hızlarında büyümenin durgun fazında (fermentasyonun 120. saati) elde edilmiştir. Havalandırma hızının lipaz aktivitesi üzerine etkisi 1-4 vvm aralığında incelenmiş, en yüksek lipaz aktiviteleri karbon kaynağı olarak glukoz veya melas sakkarozu ve %10 PFR içeren ortamlarda 2 vvm havalandırma hızında sırasıyla 102,67 U/L, 171,20 U/L olarak bulunmuştur.
811
818

REFERENCES

References: 

1. Ellaiah P., Prabhakar T., Ramakrishna B., Thaer
Taleb A., Adinarayana K., “Production of lipase
by immobilized cells of Aspergillus niger”,
Process Biochemistry, 39, 525-528, 2004.
2. Tweddell R.J., Kermasha S., Combes D., Marty
A., “Esterification and interesterification activies
of lipases from Rhizopus niveus and Mucor
miehei in three different types of organic media: a
comparative study”, Enzyme Microb. Technol.,
22, 439-445, 1998.
3. Isobe K., Akiba T., Yamaguchi S.,
“Crystallization and characterization of lipase
from Penicillium cyclopium”, Agric. Biol.
Chem., 52 (1), 41-47, 1988.
4. Farooqui A.A., Yang H.C., Horrock L.A.,
“Purification of lipases, phospholipases and
kinases by heparin–Sepharose chromatography”,
J. Chromatogr., 673 (2), 149 –158, 1994.
5. Pabai F., Kermasha S., Morin A., “Lipase from
Pseudomonas fragi CRDA 323: partial
purification, characterization and
interesterification of buffer fat”, Appl.
Microbiol. Biotechnol., 43, 42-51, 1995.
6. Dharmsthiti S., Kuhasuntisuk B., “Lipase from
Pseudomonas aeruginosa LP602: biochemical
properties and application for wastewater
treatment”, J. Indust. Microbiol. Biotechnol.,
21, 75-80, 1998.
7. Taipa M.A., Aires-Barros M.R., Cabral J M.S.,
“Purification of lipases”, J. Biotechnol., 26, 111-
142, 1992.
8. Schuepp C., Kermasha S., Michalski M.-C.,
Morin A., “Production, partial purification and
characterisation of lipases from Pseudomonas
fragi CRDA 037”, Process Biochem., 32, 225-
232, 1997.
9. Giuseppin M.L.F., “Effects of dissolved oxygen
concenytration on lipase production by Rhizopus
delemar”, Appl. Microbiol. Biotechnol., 20,
161-165, 1984.
10. Burkert J.F.M., Maugeri F., Rodrigues M.I.,
“Optimization of extracellular lipase production
by Geotrichum sp. Using factorial design”,
Bioresource Technol., 91, 77-84, 2004.
11. Vadehra D.A., Harmon L.G. “Factors affecting
production of staphylococcal lipase”, J. Appl.
Bacteriol., 32, 147-150, 1969.
12. Lee S.Y., Rhee J.S., “Production and partial
prufication of a lipase from Pseudomonas
putida”, Enzyme Microbiol. Biotechnol., 15,
617-623, 1993.
13. Elibol M., Özer, Da., “Lipase production by
immobilised Rhizopus arrhizus”, Process
Biochem., 36, 219-223, 2000.
14. Elibol M., Mavituna F., “Effect of
perfluorodecalin as an oxygen carrier on
actinorhodin production by Streptomyces
coelicolor A3(2)”, Appl. Microbiol. Biotechnol.,
35, 206-210, 1995.
15. Elibol M., Özer Db., “Influence of oxygen
transfer on lipase production by Rhizopus
arrhizus”, Process Biochem., 36, 325-329, 2000.
16. Açıkel Ü., Erşan M., Sağ Acıkel Y., “The effects
of the composition of growth medium and
fermentation conditions on the production of
lipase by R. Delemar”, Turk J Biol., 35-44,
2011.
17. Sağ Acıkel Y., Rhizopus delemar ile lipaz
üretimi, Proje no: MİSAG 282, TÜBİTAK,
2006.
18. Wonderwülbecke T., Kieslich K., Erdman H.,
“Comparison of lipases by different assays”,
Enzyme and Microbial Technology, 14, 631-
639, 1992.
19. Acıkel, U., Ersan, M., “Acid phosphatase
production by Rhizopus delemar: A role played
in the Ni(II) bioaccumulation process”, Journal
of Hazardous Materials, 184, 632-639, 2010.
20. Frost GM, Moss DA., “Production of enzymes by
fermentation”, Biotechnology, Germany:VCH
Verlagsgessellschaft mbh, 7a, 65–211, 1987.

Thank you for copying data from http://www.arastirmax.com