Buradasınız

DOLGU MADDESİ OLARAK KULLANILAN FARKLI UÇUCU KÜLLERİN SERT POLİÜRETAN KÖPÜK MALZEMELERİN MEKANİK ÖZELLİKLERİ İLE ISIL VE YANMA DAVRANIŞLARI ÜZERİNE ETKİLERİ

THE EFFECTS OF DIFFERENT FLY ASH FILLERS ON THE MECHANICAL PROPERTIES, THERMAL AND FIRE BEHAVIORS OF RIGID POLYURETHANE FOAMS

Journal Name:

Publication Year:

Abstract (2. Language): 
Fly ash which is a by-product of coal-fired power stations has been used as filler in different polymeric materials for different purposes. Since the chemical composition and the size of fly ash may vary depending on the coal type and combustion, properties of fly ash should be examined before the incorporation of fly ash into polymeric materials. In this study, two fly ashes which have different chemical compositions are used as filler in rigid polyurethane foams. The fly ashes were added in 5 %, 10 %, 15 % and 20 % in the total mass. The morphology of polyurethane foam cells was observed by using scanning electron microscopy and the effects of two different fly ashes on the thermal conductivity, the compressive strength, thermal stability and flammability of rigid polyurethane foams were investigated. Experimental results indicated that fly ash addition into rigid polyurethane foam has no negative effects on thermal conductivity of the materials; however it caused decreasing in the compression strength within the acceptable limits. In addition, it was determined that the foam materials filled with the fly ash containing high amount of SiO2 shows better fire resistance and thermal stability.
Abstract (Original Language): 
Kömür kullanılan güç santrallerinin bir yan ürünü olan uçucu kül, farklı polimer malzemelerde değişik amaçlar için dolgu maddesi olarak kullanılmaktadır. Uçucu külün kimyasal bileşimi ve parçacık boyutu, kömür tipine ve yanmaya bağlı olarak değişebildiğinden dolayı polimer malzemelerde kullanılmadan önce bu özelliklerinin incelenmesi gereklidir. Bu çalışmada, farklı kimyasal bileşime sahip iki uçucu kül, sert poliüretan köpük malzemede dolgu maddesi olarak kullanılmıştır. Uçucu küller toplam kütleye % 5, % 10, % 15 ve % 20 oranlarında eklenmiştir. Sert poliüretan köpüğün elektron mikroskobu ile hücre yapısı incelenmiş ve iki farklı uçucu külün köpüğün ısı iletim katsayısına, basma dayanımına, ısıl kararlılığına ve alev alabilirliğine etkileri incelenmiştir. Deneysel sonuçlar, uçucu küllerin sert poliüretan köpük malzemeye ilavesinin ısı iletim katsayısı üzerinde olumsuz etkilere sebep olmadığını, bununla birlikte, basma dayanımında kabul edilebilir sınırlar içerisinde düşmelere neden olduğunu ortaya koymuştur. Ayrıca, yüksek SiO2 içeren uçucu kül ilaveli köpük malzemelerin ısıl bozunma ve yanmaya daha dirençli olduğu belirlenmiştir.
841
853

REFERENCES

References: 

1. Şengül Ü., “Uçucu Kül ve Çevresel Etkileri”, Afyon Kocatepe Üniversitesi Fen Bilimleri Dergisi, Cilt 7, No 1, 89-104, 2001.
2. Güler G., Güler E., İpekoğlu Ü. ve Mordoğan H., “Uçucu Küllerin Özellikleri ve Kullanım Alanları”, Türkiye 19. Uluslararası Madencilik Kongresi ve Fuarı, İzmir, Türkiye, 419-423, 09-12 Haziran 2005.
3. Ahmaruzzaman M., “A Review on the Utilization of Fly Ash”, Progress in Energy and Combustion Science, Cilt 36, 327–363, 2010.
4. Aruntaş H. Y., “Uçucu Küllerin İnşaat Sektöründe Kullanım Potansiyeli” Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 21, 193-203, 2006.
5. Fırat S. ve Cömert A.T., “Uçucu Kül, Kireç ve Çimento ile İyileştirilmiş Kaolinde Kür Süresinin CBR Üzerine Etkileri”, Journal of the Faculty of Engineering and Architecture of Gazi University,Cilt 26, No 4, 719-730, 2011.
6. Itskos G., Rohatgi P. K., Moutsatsou A., DeFouw J.D., Koukouzas N., Vasilatos C. ve Schultz B.F., “Synthesis of A356 Al–High-Ca Fly Ash Composites by Pressure Infiltration Technique and their Characterization”, Journal of Materials Science, Cilt 47, 4042–4052, 2012.
7. Gürü M., Atar M. ve Yıldırım R., “Production of Polymer Matrix Composite Particleboard From Walnut Shell and Improvement of Its Requirements”, Materials and Design, Cilt 29, 284–287, 2008.
8. Gürü M., Aruntaş Y., Tüzün F.N. ve Bilici İ., “Processing of Urea-Formaldehyde-Based Particleboard from Hazelnut Shell and Improvement of Its Fire and Water Resistance”, Fire and Materials, Cilt 33, No 8, 413-419, 2009.
9. Gürü M., Şahin M., Tekeli S. ve Tokgöz H., “Production of Polymer Matrix Composite Particleboard from Pistachio Shells and Improvement of its Fire Resistance by Fly Ash”, High Temperature Materials And Processes, Cilt 28, No 3, 191-195, 2009.
10. Kongvasana N., Kositchaiyong A., Wimolmala E., Sirisinha C., ve Sombatsompopa N., “Fly Ash Particles and Precipitated Silica as Fillers in Nr/Cr Vulcanizates Under Thermal and Thermal-Oil Ageing” Polymers for Advanced Technologies, Cilt 22, 1014–1023, 2011.
11. Sombatsompop N., Thongsang S., Markpin T. ve Wimolmala E. “Fly Ash Particles and Precipitated Silica as Fillers in Rubbers. I. Untreated Fillers in Natural Rubber and Styrene–Butadiene Rubber Compounds”, Journal of Applied Polymer Science, Cilt 93, 2119–2130, 2004.
12. Rama S. R. ve Rai S. K., “Studies on Physicomechanical Properties of Fly Ash-Filled Hydroxyl-Terminated Polyurethane-Toughened Epoxy Composites”, Journal of Reinforced Plastics and Composites, Cilt. 29, 2099-2104, 2010.
13. Wu G., Gu J. ve Zhao X., “Preparation and Dynamic Mechanical Properties of Polyurethane-Modified Epoxy Composites Filled with Functionalized Fly Ash Particulates”, Journal of Applied Polymer Science, Cilt 105, 1118–1126 2007.
14. Ray D., Bhattacharya D., Mohanty A. K., Drzal L. T. ve Misra M., “Static and Dynamic Mechanical Properties of Vinylester Resin Matrix Composites Filled with Fly Ash”, Macromolecular Materials and Engineering, Cilt 291, 784–792, 2006.
15. Varlamova L. P., V. CherkasovK., G. Domrachev A. ve ark., “Physicomechanical Properties of Polyurethane Foam Filled with Pyrolytic Chromium Coated Aluminosilicate Ash Microspheres”, Russian Journal of Applied Chemistry, Cilt 83, No. 3, 492–496, 2010.
R. Yurtseven ve ark. Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan…
852 Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 4, 2013
16. Chow J.-D., Chai W.-L., Yeh C.-M. ve Chuang F.-S., “Recycling and Application Characteristics of Fly Ash from Municipal Solid Waste Incinerator Blended with Polyurethane Foam”, Environmental Engineering Science, Cilt 25, 461-473, 2008.
17. Shao L., Qiu J., M. Liu, Feng H., Zhangb G. ve Qina L., “Preparation and Characterization of Fly Ashes and Polyaniline Core/Shell Microspheres” Synthetic Metals, Cilt 160, 143–149, 2010.
18. Khan M. J., Al-Juhani A. A., Shawabkeh R., Ul-Hamid A. ve Hussein I. A., “Chemical Modification of Waste Oil Fly Ash For Improved Mechanical and Thermal Properties of Low Densitypolyethylene Composites”, Journal of Polymer Research, Cilt 18, 2275–2284, 2011.
19. Parvaiz M. R., Mahanwar P.A., Mohanty S. ve Nayak S. K. “Effect of Surface Modification of Fly Ash Reinforced in Polyetheretherketone Composites”, Polymer Composites, Cilt 32, 1115–1124, 2011.
20. Iraola-Arregui I., Potgieter H. ve Liauw C. M. “Evaluation of Coupling Agents in Poly(propylene)/Fly Ash Composites: Effect on Processing and Mechanical Properties”, Macromolecular Materials and Engineering, Cilt 296, 810–819, 2011.
21. Anandhan S., Sundar S. M., Senthil T., Mahendran A. R. ve Shibulal G. S., “Extruded Poly(Ethylene-Co-Octene)/Fly Ash Composites – Value Added Products from an Environmental Pollutant”, Journal of Polymer Research, Cilt 19, 9840, 2012.
22. Bonda S., Mohanty S. ve Nayak S. K., “Viscoelastic, Mechanical, and Thermal Characterization of Fly Ash-Filled ABS Composites and Comparison of Fly Ash Surface Treatments”, Polymer Composites, Cilt 33, No 1, 22-34, 2012.
23. Ubowska A. “Montmorillonite as a Polyurethane Foams Flame Retardant”, Archivum Combustionis, Cilt. 30, 459-462, 2010.
24. Goods S. H., Neuschwanger C. L., Whinnery L. L. ve Nıx W. D., “Mechanical Properties of a Particle-Strengthened Polyurethane Foam”, Journal of Applied Polymer Science, Cilt. 74, 2724–2736, 1999.
25. Mosiewicki, M. A., Dell’Arciprete, G. A., Aranguren, M. I. ve Marcovich, N. E., “Polyurethane Foams Obtained From Castor Oil-Based Polyol and Filled with Wood Flour”, Journal of Composite Materials, Cilt 43, 25, 3057-3072, 2009.
26. Thirumal, M., Singha N. K., Dipak K., Manjunath B. S. ve Naik Y.P., “Halogen-Free Flame-Retardant Rigid Polyurethane Foams: Effect of Alumina Trihydrate and Triphenylphosphate on the Properties of Polyurethane Foams”, Journal of Applied Polymer Science, Cilt 116, 2260-2268, 2010.
27. Bian, X. C., Tang, J. H., Li, Z. M., Lu, Z. Y. ve Lu, A., “Dependence of Flame-Retardant Properties on Density of Expandable Graphite Filled Rigid Polyurethane Foam”, Journal Of Applied Polymer Science, Cilt 104, 3347-3355, 2007.
28. Michel, F. S., Chazeau, L. ve Cavaillé, J. Y., “Mechanical Properties of High Density Polyurethane Foams: II Effect of the Filler Size”, Composites Science and Technology, Cilt 66, 2709-2718, 2006.
29. Tarakcılar A. R., “The Effects of Intumescent Flame Retardant Including Ammonium Polyphosphate/Pentaerythritol and Fly Ash Fillers on the Physicomechanical Properties of Rigid Polyurethane Foams”, Journal of Applied Polymer Science, Cilt 120, No 4, 2095-2102, 2011.
30. Usta N., “Investigation of Fire Behavior of Rigid Polyurethane Foams Containing Fly Ash and Intumescent Flame Retardant by Using a Cone Calorimeter”, Journal of Applied Polymer Science, Cilt 124, 3372-3382, 2012.
31. Türker P., Erdoğan B., Katnaş F. ve Yeğinobalı A., “Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri”, Türkiye Çimento Müstahsilleri Birliği / AR-GE Enstitüsü, Ankara, Türkiye, 2009.
32. BASF Elastogran, Elastopor H 2011/4, Teknik Bilgi Kartı, 2005.
33. Thirumal M., Khastgir D., Singha N. K., Manjunath B. S. ve Naik Y. P., “Effect of Expandable Graphite on the Properties of Intumescent Flame-Retardant Polyurethane Foam”, Journal of Applied Polymer Science, Cilt 110, 2586–2594 2008.
34. ASTM D 1621-10, “Standard Test Method for Compressive Properties of Rigid Cellular Plastics”, American Society for Testing and Materials, New York, 2010.
35. ASTM D 618-08, “Standard Practice for Conditioning Plastics for Testing”, American Society for Testing and Materials, New York, 2008.
36. UL 94 “Tests for Flammability of Plastic Materials for Parts in Devices and Appliances”, Underwriters Laboratories Inc., Northbrook IL, 2006.
37. Czuprynski, B., Paciorek-Sadowska, J. ve Liszkowska J., “Properties of Rigid Polyurethane-Polyisocyanurate Foams Modified with the Selected Fillers”, Journal of Applied Polymer Science, Cilt 115, 2460–2469, 2010.
38. Thirumal, M., Khastgir, D.. Singha, N. K., Manjunath, B. S. ve Naik, Y. P., “Mechanical, Morphological and Thermal Properties of Rigid Polyurethane Foam: Effect of The Fillers”, Cellular Polymers, Cilt 26, No 4, 245-259, 2007.
Dolgu Maddesi Olarak Kullanılan Farklı Uçucu Küllerin Sert Poliüretan… R. Yurtseven ve ark.
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 28, No 4, 2013 853
39. Fan M. ve Brown R. C., “Comparison of the Loss-on-Ignition and Thermogravimetric Analysis Techniques in Measuring Unburned Carbon in Coal Fly Ash”, Energy & Fuels, Cilt 15, 1414-1417, 2001. 40. Brown R. C. ve Dykstra J., “Systematic Errors in the Use of Loss-on-Ignition to Measure Unburned Carbon in Fly Ash”, Fuel, Cilt 74, No. 4, 570-574, 1995.
41. Yurtseven R., Uçucu Kül İçeren Poliüretan Esaslı Kompozit Malzemelerin Mekanik ve Termal Özelliklerinin İncelenmesi, Doktora Tezi, Pamukkale Üniversitesi, Fen Bilimleri Enstitüsü, (Devam ediyor)

Thank you for copying data from http://www.arastirmax.com