Buradasınız

SÜREKLİ ZAMANLI OTONOM KAOTİK DEVRE TASARIMI VE SİNYAL GİZLEME UYGULAMASI

DESIGN OF A CONTINUOUS-TIME AUTONOMOUS CHAOTIC CIRCUIT AND APPLICATION OF SIGNAL MASKING

Journal Name:

Publication Year:

Abstract (2. Language): 
Chaos and chaotic systems have many fields of applications. One of the popular practical applications is secure communication. Chaotic signals depend on initial conditions very sensitively. Chaos-based secure communication systems have been the alternative of the standard spread-spectrum systems, since they are able to spread the spectrum of the information signals and simultaneously encrypt the information signals with chaotic circuitry which is simple and inexpensive.In this study, the circuit design of the continuous –time autonomous chaotic systems are explained in details based on nonlinear Thomas system(TS_96) which was introduced in 1996. In addition an example of the PSpice-based signal hiding implementation on the Lorenz system is given. The chaotic system equations of TS_96 are obtained, its chaotic circuit is designed, both its circuit design simulated in PSpice and is realized physically. For the signal hiding application with chaotic signal, the Lorenz system are considered, consequently its numerical simulations and electronical circuit simulations are realized in Matlab and PSpice environments.
Abstract (Original Language): 
Kaos ve kaotik sistemler birçok uygulama alanına sahiptir. Uygulama alanlarından biri de kaos ile güvenilir haberleşmedir. Kaotik işaretler, başlangıç şartlarına hassas bağımlıdırlar. Kaos tabanlı güvenilir haberleşme sistemleri, iletilecek bilgi işaretlerinin spektrumunu geniş bir sahaya yayabilmeleri, eşzamanlı olarak bildiri işaretlerini kodlayabilmeleri ve bu işlemleri basit ve pahalı olmayan kaotik devre düzenekleriyle gerçekleştirebilmeleri sebebiyle, literatürdeki standart geniş spektrumlu haberleşme sistemlerine alternatif olmuşlardır. Bu çalışmada sürekli zamanlı otonom kaotik sistemlerin devre tasarımı, 1996 yılında tanıtılan doğrusal olmayan Thomas sistemi (TS_96) üzerinde anlatılmış, ayrıca Lorenz sistemi üzerinde de PSpice-tabanlı bir sinyal gizleme uygulaması örneği verilmiştir. TS_96 sisteminin kaotik denklemleri elde edilmiş, kaotik devresi tasarlanmış, hem PSpice ortamında simüle edilmiş hem de fiziksel olarak elektronik devresi devre tasarımı yapılmıştır. Kaotik sinyal gizleme uygulaması için, Lorenz sistemi ele alınmış, Matlab ortamında nümerik olarak ve PSpice ortamında elektronik devre simülasyonu gerçekleştirilmiştir.
79
87

REFERENCES

References: 

1. Lorenz, E. N., “ Deterministic nonperiodic flow
”, J. Atmos. Sci. ,Cilt 20,130–141,1963.
2. May, R. M. , “Simple mathematical models with
very complicated dynamics”, Nature, Cilt
261(5560), 459-467, 1976.
3. Kurt, E., Kasap, R., “Karmaşanın Bilimi
Kaos”, Nobel Yayınları, Ankara, Kasım 2011.
4. Ilya, P., “The End Of Certainty:Time, Chaos”,
Nobel Yayınları, ISBN: 975-8304-24-0; page-
187, 1999.
5. Chua, L. O., Wu, C.W., Huang, A., Zhong, G.,
“A Universal Circuit for Studying and
Generating Chaos-Part I: Routes to Chaos”,
Sürekli Zamanlı Otonom Kaotik Devre Tasarımı ve Sinyal Gizleme Uygulaması Ü. Çavuşoğlu ve ark.
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 1, 2014 87
IEEE Trans. Circuits&Systems-I, Cilt 40,
732-761, 1993.
6. Li, Z. , Li, K., Wen, C., Soh, Y. C., "A new
chaotic secure communication system", IEEE
Transactions on Communications, Cilt 51, No
8, 1306-1312, 2003.
7. Torres, L.A.B. , Aguirre, L.A., "Inductorless
Chua's circuit", Electronics Letters, Cilt 36, No
23,1915-1916, 2000.
8. Testa, J., Perez, J. ve Jeffries, C., “Evidence for
universal chaotic behaviour of a nonlinear
oscillator”, Phys. Rev. Lett. , Cilt 48, 714-717,
Mar. 1984.
9. Kurt, E., Cantürk, M., “Chaotic dynamics of
resistively coupled DC-driven distinct Josephson
junctions and the effects of circuit parameters”,
Physica D: Nonlinear Phenomena, Cilt 238,
No 22, 2229-2237, 2009.
10. Kurt E., Cantürk, M., “Bıfurcatıons and
hyperchaos from a dc drıven non-ıdentıcal
Josephson Junctıon system”, Int. J. Bifurcation
and chaos, 20(11)(3725-3740). (2010).
11. Arcak, M., Larsen, M., Kokotović, P., “ Circle
and Popov criteria as tools for nonlinear
feedback design”, Automatica, Cilt 39, 643–
650, 2003.
12. Pecora, L. M. , Carroll, T. L., “ Synchronization
in Chaotic Systems”, Phys. Rev. Lett., Cilt 64,
821-824,1990.
13. Cuomo, K. M., Oppenheim, A. V., Strogatz, S.
H., “Synchronization of Lorenz-based chaotic
circuits with applications to communications”,
IEEE Trans. Circuits Syst.; Cilt 40, No 10,
626–633, 1993.
14. Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O.,
Parlitz, U., “Experimental Demonstration of
Secure Communications via Chaotic
Synchronization”, International J. of
Bifurcation&Chaos, Cilt 2, 709-713,1992.
15. Halle, K. S., Wu, C. W., Itoh, M., Chua, L.O.,
“Spread Spectrum Communication Through
Modulation of Chaos”, International J. of
Bifurcation&Chaos, Cilt 3, 469-477,1993.
16. Dediu, H. , Kennedy, M. P, Hasler, M., “Chaos
shift Keying: Modulation and Demodulation of a
Chaotic Carrier Using Self-Synchronizing
Chua’s Circuits”, IEEE Trans. Circuits&Syst.-
I, Cilt 40, 634-642, 1993.
17. Wu, C. W., Chua, L., “A Simple Way to
Synchronize Chaotic Systems vith Applications
to Secure Communication Systems”,
International J. of Bifurcation&Chaos, Cilt
3,1919-1627, 1993.
18. Pehlivan, İ., Uyaroğlu, Y., “Simplified Chaotic
Diffusionless Lorenz Attractor and its
Application to Secure Communication Systems”,
IET Communications, Cilt 1, No 5, 1015-1022,
2007.
19. Uyaroğlu, Y., Pehlivan, İ., “ Nonlinear Sprott94
Case A Chaotic Equation: Synchronization and
Masking Communication Applications”,
Computers and Electrical Engineering, Cilt
36, No 6, 1093-1100, 2010.
20. Sundarpandian, V., Pehlivan, İ. “Analysis,
Control, Synchronization and Circuit Design of a
Novel Chaotic System”, Mathematical and
Computer Modelling, Cilt 55, 1904–1915,
2012.
21. Thomas, R., “Analyse et synthèse de systèmes à
dynamique chaotique en termes de circuits de
rétroaction (feedback)”, Bull. Cl. Sci. Acad.
Roy. Belg., Cilt 7, 101–124,1996.
22. Cuomo, K. M., Oppenheim, A. V., “Circuit
Implementation of Synchronized Chaos with
applications to Communication”, Phys. Rev.
Lett., Cilt 71, 65-68,1993.
23. Charlesworth, A. S., Fletcher, J. R., “Systematic
Analogue Computer Programming, 2nd
edition”, Unwin Brothers Limited, 1974.

Thank you for copying data from http://www.arastirmax.com