Buradasınız

KABLOSUZ SENSÖR AĞLARINDA KÜÇÜLTÜLMÜŞ RADYO HARİTASI KULLANAN İMZA TABANLI DİNAMİK KONUM BULMA TEKNİĞİ

A DYNAMIC LOCATION ESTIMATION TECHNIQUE BASED ON FINGERPRINT USING A REDUCED RADIO MAP IN WIRELESS SENSOR NETWORKS

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
In closed areas, fingerprint location estimation algorithms using a radio map, which can be used in wireless sensor networks, consist of two phases, mapping and location estimation. There are several important criterions in the phases, for example using of a radio map which has a small capacity and which shows a comprehensive RSSI dispersion, a quick position calculation, a good accuracy rate, and so on. In the study, a novel technique which employs K-Means method to decrease size of the radio map by reducing separately RSSI (Received Signal Strength Indicator) data of the anchors has been proposed for indoor position detection in WSNs. Besides, a subfield construction process to increase the accuracy of the estimation has been carried out. In the location estimation phase, a technique which is different from K-Nearest Neighbour (KNN) has been preferred. In this technique, unlike KNN the number of the decision cells varies dynamically according to RSSI data received. The system was implemented in a closed environment by using TELOSB nodes. The results of the experiments and the calculations were compared with the results of well-known deterministic methods based on KNN and the validation of the proposed system was tested.
Abstract (Original Language): 
Kapalı alanlarda konum tespiti için kullanılan algoritmalardan birisi de kablosuz sensör ağlarında da kullanılan “İmza” veya “Parmak izi (Fingerprint)” tabanlı konum tespiti algoritmasıdır. İmza tabanlı konum tespiti,” Alınan Sinyal Gücü Göstergesi (RSSI)” radyo haritalama ve konum kestirim fazlarından oluşur. Haritalama fazında, elde edilen RSSI veritabanının küçük kapasiteli fakat çalışılacak alandaki RSSI dağılımını iyi ifade edebilecek yapıda olması, konum tespiti fazında ise kestirimin doğruluk miktarı ve hesaplama hızı önemli kriterlerdir. Bu çalışmada kapalı alanlardaki kablosuz sensör ağ ortamlarında kullanılabilen, imza tabanlı konum tespiti yöntemi için iki yeni yaklaşım önerilmiştir. İlk yaklaşım, radyo haritalama fazında, “K-Means” metodunu kullanarak her bir çapa düğüme ait RSSI verilerinin ayrı ayrı indirgenip ilgili radyo haritasının boyutunun küçültülmesini sağlayan bir tekniktir. Ayrıca bu fazda konum kestirimi işleminin hassasiyetini arttırmak için “Mantıksal Alt Bölgeleme” işlemi gerçekleştirilmiştir. İkinci yaklaşım ise; konum kestirimi fazı için K-En Yakın Komşuluk (KNN) yöntemine alternatif olabilecek, karar için sabit bir “K” değerinin yerine, bu değerin mantıksal alt bölgelemedeki karar hücre sayısına göre dinamik olarak seçildiği bir tekniktir. Sistem kapalı bir ortamda TelosB düğümlerle gerçekleştirilerek, önerilen yaklaşımlara göre hesapsal ve deneysel sonuçlar elde edilmiştir. Bunun yanı sıra literatürde karar tabanlı yaklaşım olarak bilinen KNN temelli lokasyon tespit algoritması da mevcut test ortamına uygulanarak deneysel ve hesapsal sonuçları elde edilmiştir. Buradan elde edilen sonuçlar ile önerilen tekniğin sonuçları karşılaştırılarak önerilen tekniğin daha uygun olduğu test edilmiştir.
217
226

REFERENCES

References: 

1. Pal, A., “Localization Algorithms in Wireless
Sensor Networks: Current Approaches and Future
Challenges”,Network Protocols and Algorithms,
Cilt 2, No 1, 45-74, 2010.
2. Farahani, S., ”ZigBee Wireless Networks and
Transceivers”, Newness is An Imprint of
Elsevier-Oxford, ISBN: 978-0-7506-8393-7, 2008.
3. Kulaib, A. R., Shubair, R. M., Al-Qutayri, M. A.,
ve Jason, W. P. N., ”An Accurate Localization
Technique for Wireless Sensor Networks Using
MUSIC Algorithm”, Journal Of
Communications, Cilt 7, No 4, 281-288, 2012.
4. Naik, G.A., Khedekar, M.P., Krishnamoorthy, M.,
ve Deshmukh. R.N., “Comparison of RSSI
Techniques in Wireless Indoor Geolocation”,
NCCCS, Hindistan, 1-5, 21 Kasım 2012
5. Yıldırım, G., ve Tatar, Y., ”Enhancement Of The
Empiric RSSI – Distance Relationship By
Experimental Datum In Wireless Sensor
Networks”, IADIS International Conference
Applied Computing 2012, Madrid, İspanya, 380-
384, 2012
6. Mitilineos, S. A., Kyriazanos, D. M., Segou, O. E.,
Goufas, J. N., ve Thomopoulos, S. C. A.,”Indoor
Localisation With Wireless Sensor Networks”
Progress In Electromagnetics Research, Cilt
109, 441-474, 2010.
7. Bahl, P., ve Padrnanabhan, V.N.,"RADAR: An In-
Building RF-BASED User Location and Tracking
System," INFOCOM, Cilt 2,775-784, April,2000.
8. Narzullaev, A., Park ,Y., Yoo, K., ve Yu J., ”A Fast
and Accurate Calibration Algorithm For Real-
Time Locating Systems Based On The Received
Signal Strength Indication”, Int. J. Electronic
Communitaion (AEÜ), Cilt 65, No 4, 305–311,
2011.
9. Mengual L., Marbán O., ve Eibe, S., “Clusteringbased
location in wireless Networks”, Expert
Systems with Applications, Cilt 37, No 9, 6165-
6175, 2010.
10. Forero P.A., , Cano A., , Giannakis G.B.,
“Consensus-based k-means Algorithm for
Distributed Learning using Wireless Sensor
Networks”, Workshop on Sensors, Signal and
Information Process., 2008 .
11. Gómez, J.A., Medina, A., Dorronzoro, V., Rivera,
O., ve Martín,S., “Fingerprint Indoor Position
System Based on Bitcloud and Openmac”,
Journal of Networks, Cilt 8, No 1, 37- 44, 2013.
12. Hur, S., Choi, J., ve Park, Y., ”Fingerprint
Location Database Construction for Enhancing
Accuracy of WiFi based Indoor Localization”,
ISA-IST2012, Şangay, Çin, 188-190, Nisan, 2012
13. Rodrigues, M., L., ve Campos, M.F.,
”Fingerprinting-based Radio Localization in
Indoor Environments Using Multiple Wireless
Technologies”, 22nd PIMRC2011, Toronto,
Kanada, 1207-1212, 2011
14. Pei, L., Chen, R., Liu, J., Kuusniemi, H.,
Tenhunen, T., ve Chen, Y.,” Using Inquiry-based
Bluetooth RSSI Probability Distributions for
Indoor Positioning”, Journal of Global
Positioning Systems, Cilt 9, No 2, 124-130, 2010.
15. Malekpour, A., Ling, T. C., ve Li W. C., ”Location
Determination Using Radio Frequency RSSI and
Deterministic Algorithm”, CNSR 2008 (6th),
Kanada, 488-495, 5-8 Mayıs, 2008.
16. Curran, K., Furey, E., Lunney, T.,, Santos J.,
Woods, D.,, ve McCaughey, A., ”An Evaluation
of Indoor Location Determination Technologies”,
Journal of Location Based Services, Cilt 5, No
2, 61-78, 2011
17. Dawes, B., ve Chin, K.W., “A comparison of
deterministic and probabilistic methods for indoor
localization”, The Journal of Systems and
Software, Cilt 84, No 3, 442–451, 2011.
18. Tatar, Y., ve Yıldırım, G., “An Alternative Indoor
Localization Technique Based on Fingerprint in
Wireless Sensor Networks”, International
Journal of Advanced Research in Computer
and Communication Engineering, Cilt 2, No 2,
1288-1294, 2013.
19. Arya, A., Godlewski, P., Campedel, M., ve Du, C.
G., "Radio Database Compression for Accurate
Energy-Efficient Localization in Fingerprinting
Systems”, IEEE Trans. on knowledge and data
Engineering, Cilt 25, No 6, 1368-1379, 2013
20. Lin, M.A., Yubin, X., ve Di, W., “A Novel Two-
Step WLAN Indoor Positioning Method”, Journal
of Computational Information Systems, Cilt 6,
No 14, 4627-4636, 2010.
21. Rozyyev, A., Hasbullah, H., ve Subhan, F., “
Combined K-Nearest Neighbors and Fuzzy Logic
Indoor Localization Technique for Wireless Sensor
Network”, Research Journal of Information
Technology ,Cilt 4, No 4, 155-165, 2012.
22. Milioris, D., Tzagkarakis, G., Papakonstantinou,
A., Papadopouli, M., ve Tsakalides, P., “Low-
Dimensional Signal-Strength Fingerprint-based
Positioning in Wireless LANs”, Ad Hoc
Networks, doi:10.1016/j.adhoc.2011.12.006.
23. Jerusha, S., Kulothungan, K., ve Kannan, A.,
“Locatıon Aware Cluster Based Routıng In
Wıreless Sensor Networks”, International
Journal of Computer & Communication
Technology, Cilt 3, No 5, 2012

Thank you for copying data from http://www.arastirmax.com