Buradasınız

DEMİRYOLU ÇİZELGELEME PROBLEMİNİN MODELLENMESİ VE ÇÖZÜMÜ

MODELLING AND SOLVING THE RAILWAY SCHEDULING PROBLEM

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, to find solutions to problems related to delays in train suggestions were made. In this paper, first of all Yeniçubuk-Çetinkaya railway which have 16 stations and 6 trains worked on, was handled and 0-1 integer programming was proposed to reduce the delays. Train time schedules were regulated with data obtained from solution of this model and delays have been improved by 81.59 %. Also, it was shown, that the delays can be improved 96.52 % by simulating the case of changing 31 km railway line out of totally 240 km with double railway line.
Abstract (Original Language): 
Bu çalışmada, trenlerdeki gecikmelerle ilgili sorunlara çözüm bulmak için önerilerde bulunulmuştur. Bu makalede ilk olarak 16 istasyonlu 6 trenin çalıştığı Yeniçubuk-Çetinkaya demiryolu hattı ele alınmış ve gecikmeleri azaltmak için 0-1 tamsayılı programlama modeli önerilmiştir. Bu model sonucunda, elde edilen verilerle tren hareket saatleri düzenlenmiş ve gecikmelerde % 81,59 oranında iyileşme sağlanmıştır. Ayrıca ele alınan toplam 240 km’lik hat için, trenlerin gecikmesine yol açan 31 km’lik kısmında çift hatta dönüştürülmesi durumunda gecikmelerin % 96,52 oranında iyileştirme olacağı benzetim çalışması ile gösterilmiştir.
235
242

REFERENCES

References: 

1. Eren, T., Güner, E., “A Literature Survey for
Multicriteria Scheduling Problems on Single and
Parallel Machines”, Journal of The Faculty of
Engineering and Architecture of Gazi
University, 17 (4), 37-69, 2002.
2. Eren, T., “Solving Scheduling Problem with
Time Dependent Learning Effect to Number
ofTtardy Jobs and Range of Lateness Criteria”,
Journal of The Faculty of Engineering and
Architecture of Gazi University, 27 (4), 875-
879, 2012.
3. Eren, T., Güner, E., “Minimizing Total Tardiness
in a Scheduling Problem with a Learning Effect",
Applied Mathematical Modelling, 31 (7), 1351-
1361, 2007.
4. Gültekin, N., Demiryolu Çizelgeleme
Probleminin Modellenmesi ve Çözümü,
Yüksek Lisans Tezi, Kırıkkale Üniversitesi, Fen
Bilimleri Enstitüsü, 2013.
5. Charnes, A., Miller, M.H., “A Model For The
Optimal Programming of Railway Freight
Train Movements”, Purdue University and
Carnegie Institute of Technology, 1956.
6. Petersen, E., Taylor, A.J., “A Structured Model
for Rail Line Simulation and Optimization”,
Transportation Science, 16: 2, 192-206, 1982.
7. Kraay, D., Harker, P.T., Chen, B., “Optimal
Pacing of Trains in Freight Railroads: Model
Formulationand Solution”, Operations
Research, 39: 1, 82-99, 1991.
8. Higgins, L.F, Kozan, E. “Modelling Single –
Line Train Operations”, Transportation Research
Record 1489, Journal of the Transportation
Research Board, Railroad
TransportationResearch, 9-16, 1995.
9. Cordeau, J.F., Toth, P., Vigo, D., “A Survey of
Optimization Models for Train Routing and
Scheduling”, Transportation Science, 32 (4),
380-404, 1998.
10. Linder, T., Zimmermann, U.T., Train Schedule
Optimization in Public Rail Transport,
Mathematics—Key Technology for the Future:
Joint Projects Between Universities and Industry,
703-716, 2000.
11. Caprara, A., Fischetti, M., Toth, P., “Modeling
and Solving The Train Timetabling Problem”,
Operations Research, l50 (5),851-861, 2002.
12. Lee, C., Chen, C., “Scheduling of Train Driver
ForTaiwanRailway Administration”, Journal of
the Eastern Asia Society for Transportation
Studies, 5, 292-306, 2003.
13. Ahuja, K.R., Liu, J., Orlin, B.J., Sharma, D.,
Shughart, A.L., “Solving Real-Life Locomotive
Scheduling Problems, Instituefor Operations
Research and Management Sciences”,
Transportation Science, 39, 503-517, 2005.
14. Chen, C., “Using Integer Programming to Solve
the Crew Scheduling Problem in the Taipei Rapid
Transit Corporation”, Wseas Transactions on
Information Science & Applications, 4: 5, 331-
341, 2008.
15. Aydın, G., Tren Çizelgelemesi Problemi,
Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi,
Fen Bilimleri Enstitüsü, İstanbul, 2009.
16. Reimann, M., Nyström, B., “ACO For The Single
Line Train Scheduling Problem”, Working
Paper Series. Institute of Productionand
Operations Management University of Graz,
2009.
17. Danescu, E., Integration and Interoperability
of Rail Transport in Europe. Implications of
The Network in Romania and Moldova, DH
34-08.00. 14-Nord Economy, International
Economic Relations, 2013.

Thank you for copying data from http://www.arastirmax.com