Buradasınız

AKIŞKAN YATAKLI KURUTUCUDA ZENCEFİLİN KURUMA KİNETİĞİNİN İNCELENMESİ

INVESTIGATION OF DRYING KINETICS OF GINGER IN A FLUIDIZED BED DRYER

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
In the study, drying kinetics of ginger in a fluidized bed dryer are investigated. Ginger roots are sliced with thickness of 2 mm and dried from initial moisture content of 88-89% (w.b.) to the final moisture content of 4-5% (w.b.). Experiments are carried out with three different drying air temperatures of 40, 50,band 60°C by keeping the air velocity fixed at different values (3 and 4 m/s) to investigate temperature, humidity and velocity of drying gas (air). The moisture content of the samples on dry basis is measured at predetermined time intervals and then overall moisture diffusivities are calculated using the moisture ratios. Experimental results show that temperature, humidity and velocity of air are important parameters have an effect on drying rate of sliced ginger in fluidized bed dryer. In addition, experimental moisture loss data has been compared with thin layer drying models available in the literature and Page model has shown a better fit to the experimental data.
Abstract (Original Language): 
Bu çalışmada zencefilin akışkan yataklı kurutucuda kuruma kinetiği incelenmiştir. Yaş baza göre başlangıç nemi %88-89 olan zencefil kökleri, 2 mm kalınlığında dilimlenmiş ve % 4-5 nem içeriğine kadar kurutulmuştur. Kurutma havasının sıcaklığı, hızı ve bağıl neminin kuruma kinetiğine olan etkisini incelemek üzere, deneyler farklı kurutma havası (40, 50, 60 °C) sıcaklıklarında ve farklı (3 ve 4 m/s) hava hızlarında gerçekleştirilmiştir. Kurutma esnasında belli zaman aralıklarında alınan numunelerin kuru baza göre nem değerleri ölçülmüş ve daha sonra belirlenen nem oranları kullanılarak difüzyon katsayıları hesaplanmıştır. Elde edilen deneysel sonuçlar, kurutma havası sıcaklığının, hızının ve neminin kuruma hızında oldukça etkili bir parametre olduğunu göstermiştir. Ayrıca deneysel veriler literatürde var olan ince tabaka kuruma kinetiği modelleri ile karşılaştırılmış, verilerin Page modeli ile uyumlu olduğu görülmüştür.
261
269

REFERENCES

References: 

1. Mujumdar, A.S., Handbook of Industrial
Drying, Marcel Dekker, New York, A.B.D.,
1995.
2. Pugsley, T., Chaplin, G., Khanna, P., “
Application of Advanced Measurement
Techniques to Conical Lab-Scale Fluidized Bed
Dryers Containing Pharmaceutical Granule”,
Trans IChemE, Part C, Food and Bioproducts
Processing, Cilt 85, No C3, 273–283, 2007.
3. Vervloet, D., Nijenhuis, J., Ommen, J.R. Van,
“Monitoring A Lab-Scale Fluidized Bed Dryer: A
Comparison Between Pressure Transducers,
Passive Acoustic Emissions and Vibration
Measurements”, Powder Technology, Cilt 197,
36–348, 2010.
4. Wormsbecker, M., Ommen, R. Van, Nijenhuis, J.,
Tanfara, H., c, Pugsley, T., “The Influence of
Vessel Geometry on Fluidized Bed Dryer
Hydrodynamics”, Powder Technology, Cilt 194,
115–125, 2009.
5. Bizmark, N., Mostoufi, N., Sotudeh-Gharebagh,
R., Ehsani, H., “Sequential Modeling of Fluidized
Bed Paddy Dryer”, Journal of Food
Engineering, Cilt 101, 303–308, 2010.
6. Izadifar, M., Mowla, D., “Simulation of a Cross-
Flow Continuous Fluidized Bed Dryer For Paddy
Rice”, Journal of Food Engineering, Cilt 58,
325–329, 2003.
7. Assari, M.R., Basirat Tabrizi, H., Saffar-Avval,
M., “Numerical Simulation of Fluid Bed Drying
Based on Two-Fluid Model and Experimental
Validation”, Applied Thermal Engineering, Cilt
27, 422–429, 2007.
8. Fyhr, C., Kemp, I. C., “Mathematical Modelling
of Batch and Continuous Well-Mixed Fluidised
Bed Dryers”, Chemical Engineering and
Processing, Cilt 38, 11–18, 1999.
9. Lai, F.S., Chen, Y., Fan, L.T., “Modelling and
Simulation of a Continuous Fluidized-Bed Dryer”
Chemical Engineering Science, Cilt 41, No
9, 2419-2430, 1986.
10. Madhiyanon, T., Techaprasan, A., Soponronnarit,
S., “Mathematical Models Based on Heat
Transfer and Coupled Heat and Mass Transfers
for Rapid High Temperature Treatment in
Fluidized Bed: Application for Grain Heat
Disinfestation”, International Journal of Heat
and Mass Transfer, Cilt 49, 2277–2290, 2006.
11. Palancz, B., “A Mathematical Model for
Continuous Fluidized Bed Drying”, Chemical
Engineering Science, Cilt 38, No 7, 1045-1059,
1983.
12. Srinivasakannan, C., ve Balsubramaniam, N., “A
Simplified Model for The Drying of Solids in
Batch Fluidised Beds”, Braz. J. Chem. Eng., Cilt
19, 293–298, 2002.
13. Zare, D., Chen, G., “Evaluation af a Simulation
Model in Predicting the Drying Parameters for
Deep-Bed Paddy Drying”, Computers and
Electronics in Agriculture, Cilt 68, 78–87, 2009.
14. Geng, F., Xu, D., Yuana, Z., Yanb, Y., Luob, D.,
Wang, H., Li, B.,, Chyangc, C.S., “Numerical
Simulation on Fluidization Characteristics of
Tobacco Particles in Fluidized Bed Dryers”,
Chemical Engineering Journal, Cilt 150, 581–
592, 2009.
15. Meziane, S., “Drying Kinetics of Olive Pomace in
a Fluidized Bed Dryer”, Energy Conversion and
Management, Cilt 52, 1644–1649, 2011.
16. Białobrzewski, I., Zielin´ska, M., Mujumdar,
A.S., Markowski, M., “Heat and Mass Transfer
During Drying of a Bed of Shrinking Particles –
Simulation for Carrot Cubes Dried in a Spout-
Fluidized-Bed Drier”, International Journal of
Heat and Mass Transfer, Cilt 51, 4704–4716,
2008.
Akışkan Yataklı Kurutucuda Zencefilin Kuruma Kinetiğinin İncelenmesi N. Parlak
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 2, 2014 269
17. Zanoelo, E., F., “A Theoretical and Experimental
Study of Simultaneous Heat and Mass Transport
Resistances in a Shallow Fluidized Bed Dryer of
Mate Leaves”, Chemical Engineering and
Processing, Cilt 46, 1365–1375, 2007.
18. Niamnuy, C., ve Devahastin, S., “Drying Kinetics
and Quality of Coconut Dried in a Fluidized Bed
Dryer”, Chemical Engineering and Processing,
Cilt 46, 1365–1375, 2007.
19. Bayrock, D., ve Ingledew, W. M., “Fluidized Bed
Drying of Baker’s Yeast: Moisture Levels,
Drying Rates, and Viability Changes During
Drying”, Food Research International, Cilt 30,
No 6, 407-415, 1997.
20. Tasirin, S.M., Kamarudin, S.K., Jaafar, K., Lee,
K.F., “The Drying Kinetics of Bird’s Chillies in a
Fluidized Bed Dryer”, Journal of Food
Engineering, Cilt 79, 695–705, 2007.
21. Topuz, A., Gur, M., Gul M. Z., “An Experimental
and Numerical Study of Fluidized Bed Drying of
Hazelnuts”, Applied Thermal Engineering, Cilt
24, 1535–1547, 2004.
22. Balladin, D.A., Headley, O., Chang-Yen, I.,
McGaw, D.R., “High Pressure Liquid
Chromatographic Analysis of The Main Pungent
Principles of Solar Dried West Indian Ginger
(Zingiber Officinale Roscoe)”, Renewable
Energy, Cilt 13, No 4, 531–536, 1998.
23. Schweiggert, U., Hofmann, S., Reichel, M.,
Schieber, A., Carle, R., “Enzyme-assisted
liquefaction of ginger rhizomes (Zingiber
officinale Rosc.) for the production of spray-dried
and paste-like ginger condiments”, Journal of
Food Engineering, Cilt 84, 28–38, 2008.
24. Alakalı, J., Irtwange, S.V., Satimehin, A.,
“Moisture adsorption characteristics of ginger
slices”, Ciencia e Tecnologia de Alimentos, Cilt
29, No 1, 155-164, 2009.
25. Phoungchandang, S., Saentaweesuk, S., “Effect
of Two Stage, Tray and Heat Pump Assisted-
Dehumidified Drying on Drying Characteristics
and Qualities of Dried Ginger”, Food and
Bioproducts Processing, Cilt 89, No 4, 429-437,
2011.
26. Ganesapillai, M., Miranda, L. R., Reddy, T.,
Bruno, M., Singh, A., “Modeling,
Characterization, and Evaluation of Efficiency
and Drying Indices for Microwave Drying of
Zingiber Officianale and Curcuma Mangga",
Asia-Pac. J. Chem. Eng., Cilt 6, 912–920, 2011.
27. Thorat, I. D., Mohapatra, D., Sutar, R. F., Kapdi,
S. S., Jagtap, D.D., “Mathematical Modeling and
Experimental Study on Thin-Layer Vacuum
Drying of Ginger (Zingiber Officinale R.) Slices,
Food Bioprocess Technol., Cilt 5,1379–1383,
2012.
28. Jayashree, E., Visvanthan, R., “Studies on Thin
Layer Drying Characteristics of Ginger (Zingiber
Officinale) in a Mechanical Tray Drierjournal of
Plantation Crops”, Journal of Spices and
Aromatic Crops, Cilt 41, No 1, 86-90, 2013.
29. Akpinar, E., Midilli, A. ve Bicer, Y., “Single
layer drying behavior of potato slices in a
convective cyclone dryer and mathematical
modelling”, Energy Conversion Management,
Cilt 44, 1689–1705, 2003.
30. Doymaz, I., “Thin-layer drying behavior of mint
leaves”, J. Food Eng., Cilt 74, 370–375, 2006.
31. Crank, J., The Mathematics of Diffusion,
Oxford University Press, Oxford, New York,
A.B.D. 1975.
32. Senadeera, W., Bhandari, B.R., Young, G.,
Wijesinghe, B., “Influence of Shapes of Selected
Vegetable Materials on Drying Kinetics During
Fuidized Bed Drying”, Journal of Food
Engineering, Cilt 58, 277–283, 2007.
33. Holman, J.P., Experimental Methods for
Engineers, (Sixth Edition) McGraw-Hill, New
York,1994.

Thank you for copying data from http://www.arastirmax.com