Buradasınız

SARMAŞIK YAPILI TEK-FAZ DOĞRULTUCUNUN FARKLI AKIM KONTROL YÖNTEMLERİYLE PERFORMANS ANALİZİ

PERFORMANCE ANALYSIS OF INTERLEAVED SINGLE-PHASE RECTIFIER USING DIFFERENT CURRENT CONTROL METHODS

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, a comprehensive performance analysis of power factor correction control methods are presented for an interleaved single-phase rectifier operating under continuous conduction mode. The control of interleaved converter is achieved using proportional-integral control, average sliding control and predictive current control methods to obtain unity power factor and lower total harmonic distortion of input current. The interleaved power factor correction converters have many advantages in increasing power density, reducing input current ripple and RMS current of the boost capacitor, reducing filter volume, and cutting down the cost of materials. The analysis of the interleaved converter is presented and verified exactly by simulations and experimental carried out on 1 kW power and 50 kHz switching frequency. The performance of the current control methods for the interleaved converter is investigated by Matlab/Simulink program for different cases of operation such as change in input voltage and load. It is observed from the analysis that predictive current control method is more suitable than the others because it doesn’t need sense current.
Abstract (Original Language): 
Bu çalışmada, sürekli iletim modunda çalışan sarmaşık yapılı tek-fazlı doğrultucu için güç faktörü düzeltme kontrol yöntemlerinin detaylı analizi yapılmıştır. Sarmaşık yapılı doğrultucu devresinde oransal-integral kontrol, ortalama kayan kip kontrol ve öngörmeli akım kontrol yöntemleri kullanılarak birim güç faktörü (UPF) ve giriş akımının toplam harmonik bozulumu (THD) incelenmiştir. Sarmaşık yapılı güç faktörü düzeltici devrenin güç yoğunluğunu arttırma, giriş akım dalgacığını ve çıkış kapasitörünün etkin akımını azaltma, filtre büyüklüğünü düşürme gibi bir çok avantajı vardır. Sarmaşık yapılı dönüştürücünün 50 kHz anahtarlama frekansı ve 1kW güç değerinde benzetim ve deneysel çalışmaları gerçekleştirilmiş ve kontrol yöntemlerinin analizi yapılmıştır. Analizlerde, dönüştürücünün tüm kontrol yöntemlerinde yük değişimlerinde dayanıklı yapı sergilediği gözlenmiştir. Ayrıca, öngörmeli kontrol yönteminde işlemlerin bobin akımı ölçülmeden yapılması diğer iki kontrol yöntemine göre daha avantajlı olduğunu göstermiştir.
433
450

REFERENCES

References: 

1. Wolfle, W.H. ve Hurley, W.G., “Quasi-active
power factor correction with a variable inductive
filter, theory, design and practice”, Power Elec.
IEEE Transactions, Cilt 18, 248-255, 2003.
2. Huai, W., Batarseh, I., Guangyong, Z., ve
Kornetzky P., “A single-switch AC-DC converter
with power factor correction”, Power Elec., IEEE
Transactions, Cilt 15, No 3, 421-430, 2000.
3. Mather, B.A. ve Maksimović, D.,”A Simple Digital
Power-Factor Correction Rectifier Controller”,
Power Electronics IEEE Transactions, Cilt 26,
No 1, 9-19, 2001.
4. Tsai-Fu, W., Chien-Chih, C., Chih-Lung, S., ve
Cheng-Nan, W., “Analysis, design, and practical
considerations for 500 W power factor correctors”,
Aerospace and Electronic Systems IEEE
Transactions, Cilt 39, No 3, 961-975, 2003.
5. GENC, N. ve Iskender, I., “An Improved Soft
Switched PWM Interleaved Boost AC-DC
Converter”, Energy Conversion and
Management., Cilt 52, No. 1, 403-413, 2011
6. Karaarslan, A., ve Iskender, I., “Pure sinusoidal
input voltage based bridgeless PFC converter using
TMS320F2812 digital signal processor”, Electrical
and Electronics Engineering, ELECO’09
International Conf., 234-238, 2009.
7. Qiao, C., ve Smedley, K.M.,”A topology survey of
single-stage power factor corrector with a boost
type input-current-shaper”, Power Electronics
IEEE Transactions, Cilt 16, No 3, 360-368, 2001.
8. Po-Wa, L., Yim-Shu, L., Cheng, D.K.W., ve Xiu-
Cheng, L., “Steady-state analysis of an interleaved
converter with coupled inductors”, Industrial
Electronics IEEE Transactions, Cilt 47, No 4,
787-795, 2000.
9. Yao-Ching, H., Te-Chin, H., ve Hau-Chen, Y., “An
Interleaved Boost Converter with Zero-Voltage
Transition”, Power Electronics IEEE
Transactions, Cilt 24, No 4, 973-978, 2009.
10. Alonso, J.M., Dalla Costa, M.A., ve Ordiz, C.,
“Integrated Buck-Flyback Converter as a High-
Power-Factor Off-Line Power Supply”, Industrial
Electronics IEEE Transactions, Cilt 55, No 3,
1090-1100, 2008.
11. Jun, Z., Lu, D.D.-C., ve Ting, S., “Flyback-Based
Single-Stage Power-Factor-Correction Scheme with
Time-Multiplexing Control”, Industrial
Electronics IEEE Transactions, Cilt 57, No
3,1041-1049, 2010.
12. Yao, G., Chen, A., ve He, X., “Soft Switching
Circuit for Interleaved Boost Converters”, IEEE
Transactions on Power Electronics, Cilt 22, No 1,
80-86, 2007.
13. Hsieh, Y.-C., Hsueh T.-C., ve Yen, H.-C., “An
Interleaved Boost Converter With Zero-Voltage
Transition”, IEEE Transactions on Power
Electronics, Cilt 24, No 4, 973-978, 2009.
14. Yungtae, J.,ve Jovanovic M.M., “Interleaved Boost
Converter with Intrinsic Voltage-Doubler
Characteristic for Universal-Line PFC Front End”,
IEEE Power Electronics, Cilt 22, No 4, 1394-
1401, 2007.
15. Rezvanyvardom, M., ve All E., “A New Interleaved
ZCS PWM Boost Converter”, IEEE International
Conference on Power and Energy, Cilt 1, 45-50,
2010.
16. IEC Standard IEC 61000-3-2,”Electromagnetic
Compatibility (EMC), Limits for Harmonic Current
Emissions (Equipment input current ≤16A per
phase)”, 2009.
17. GENC, N., ve Iskender, I., “DSP-based Current
Sharing of Average Current Controlled Two-Cell
Interleaved Boost PFC Converter”, IET Power
Electronics, Cilt 4, No. 9, 1015-1022, 2011.
18. Pinheiro, J. R., Gründling, H. A., Vidor, D. L.R., ve
Baggio, J.E., “Control Strategy of an Interleaved
Boost Power Factor Correction Converter”, IEEE
Annual Power Electronics Specialists Conf., Cilt
1,137-142, 1999.
19. Karaarslan, A., ve Iskender, I., “Güç Katsayısı
Düzeltim Devrelerinde Ortalama Akım Kontrol
Tekniği ve Sayısal Sinyal İşlemcisi Kullanılarak
Yeni bir Yöntemin Uygulanması ”, Journal of the
Faculty of Engineering and Architecture of Gazi
University, Cilt 26, No 1, 193-203, 2011.
20. Navarro-López, E.M., Cortés, D., ve Castro, C.,
“Design of practical sliding-mode controllers with
constant switching frequency for power
converters”, Electric Power Systems Research,
Cilt 79, 796-802, 2009.
21. Zhang, W., Feng, G., Liu, Y.-F., ve Wu, B., “A
digital power factor correction (PFC) control
strategy optimized for DSP”, IEEE Trans. Power
Electronics, Cilt 19, No 6, 1474-1485, 2004.
22. Sun, C., ve Lehman, B., “Discussions on Control
Loop Design in Average Current Mode Control”,
IEEE Industry Application Conf., Cilt 4, 2411-
2417, 2000.
23. Mattavelli, P., Rossetto, L., ve Spiazzi, G., “Small-
Signal Analysis of DC-DC Converters with Sliding
Mode Control”, IEEE Trans. Power Electronics,
Cilt 12, No 1, 96-102, 1997.
24. Navarro-López, E.M., Cortés, D., ve Castro, C.,
“Design of practical sliding-mode controllers with
constant switching frequency for power
converters”, Electric Power Systems Research,
Cilt 79, 796-802, 2009.
25. A. Karaarslan, I. Iskender, "Average Sliding
Control Method Applied on PFC Converter for
Decreasing Input Current THD using Digital Signal
Processor", IET Power Electronics, Cilt 5, No. 5,
617-626, 2012.

Thank you for copying data from http://www.arastirmax.com