Buradasınız

OPTİK FİBERLİ DAĞINIK ALGILAMANIN YÜKSEK GERİLİM KABLOLARINDAKİ KULLANIMINDA SICAKLIK VE GERGİNLİK OLUŞUMLARININ YOUNG VE SHEAR MODÜLLERİ ÜZERİNDEKİ ETKİSİ

THE IMPACT OF TEMPERATURE AND STRAIN FORMATIONS ON YOUNG AND SHEAR MODULI IN USAGE OF OPTICAL FIBER DISTRIBUTED SENSING FOR POWER CABLES

Journal Name:

Publication Year:

Abstract (2. Language): 
In this study, a novel method that can be used for sensing temperature and strain changes simultaneously occurred along the XLPE insulated high voltage (HV) cables has been proposed. In this method, optical fiber distributed sensing principle based on the temperature dependence of Brillouin power changes and the temperature and intrinsic thermal strain dependencies of Young modulus and Shear modulus of the sensing fiber have been utilized. The cable model used in this study has been based on an XLPE insulated 89/154 kV power cable with a conductor cross-sectional area of 630 nurf and a length of 2 km, which has been laid under 1.5 m of a sandy ground of Bursa with an ambient temperature of 20 °C in July. The sensing fiber is a single mode fiber at 1550 nm. While temperature sensitivity of the Young modulus has been determined as -2.33 x 10"6 %/°K in the operation temperature region of the power cable, that of the Shear modulus has been obtained as -6.67 x 10"7 %/°K. Furthermore, strain sensitivities of Young and Shear moduli at the hottest point of the power cable have been obtained as 5.7154 x 10"4 % and 3.0502 x 10"4 %, respectively. In the operation regime of the cable, ~ 26.83 strain variation has been occurred for a 1 °K variation in the temperature along the cable. Both theoretical computations and simulation results show that it is a more efficient method to utilize strain and temperature sensitivities of the Young modulus in gathering information about the lifespan and the capacity of the power cable with respect to thats of the Shear modulus.
Abstract (Original Language): 
Bu çalışmada, XLPE yalıtkanlı yüksek gerilim (YG) kablolarında oluşan eşzamanlı sıcaklık ve gerginlik değişimlerinin algılanmasında kullanılabilecek yeni bir yöntem önerilmiştir. Bu yöntemde, Brillouin güç değişimlerinin sıcaklık bağımlılığını esas alan optik fiberli dağınık algılama prensibi ile algılayıcı fiberin Young modülü ve Shear modülünün, sıcaklık ve sıcaklık kaynaklı içsel gerginlik bağımlılığından yararlanılmıştır. Çalışmada model olarak, Temmuz ayında Bursa bölgesinde 20 °C ortam sıcaklığına sahip 1,5 m derinlikli kumlu toprak altına serilmiş, 2 km uzunluklu, 630 mm2 iletken kesitli, XLPE yalıtkanlı 89/154 kV YG kablosu esas alınmıştır. Algılayıcı fiber, 1550 nm'de tek modlu optik fiberdir. Young modülü sıcaklık duyarlılığı YG kablosunun çalışma sıcaklığı bölgesinde - 2,33 x 10"6 %/°K iken, Shear modülünde -6,67 x 10"7 %/°K şeklinde elde edilmiştir. Ayrıca, Young modülü gerginlik duyarlılığı ile Shear modülü gerginlik duyarlılığı, YG kablosu üzerindeki en sıcak noktada sırasıyla % 5,7154 x 10"4 ve % 3,0502 x 10"4 olarak bulunmuştur. Kablo çalışma rejiminde iken, sıcaklıktaki 1 °K değişime karşılık kablo boyunca ~ 26,83 gerginlik değişimi meydana gelmiştir. Gerek teorik hesaplamalar gerekse benzetim sonuçları, Young modülü sıcaklık ve gerginlik duyarlılıklarından yararlanmanın, kablo çalışma süresi ve kapasitesi hakkında bilgi edinilmesi açısından Shear modülü sonuçlarına göre daha etkin bir yöntem olduğunu göstermektedir.
517
525

REFERENCES

References: 

1.
Onaran
, K., Malzeme Bilimi, Bilim Teknik Yayınevi, 11. Baskı, İstanbul, 2009.
2. Sokkar, T.Z.N., Shams El-Din, M.A. ve El-Tawargy, A.S., "On Young's Modulus Profile Across Anisotropic Nonhomogeneous Polymeric Fibre Using Automatic Transverse Interferometric Method", Optics and Lasers in Engineering^ (9):1223-1229, 2012.
3. Heinhold, L., "Power Cables", Power Cables and Their Application, 3rd Edition,Part 1, Editor: Heinhold, L., Siemens Aktiengesellschaft, Berlin, Germany, 134-139, 1990.
4. Yılmaz, G., Karlık, S.E., "A Distributed Optical Fiber Sensor for Temperature Detection in Power Cables", Sensors and Actuators A:Physical, 125 (2): 148-155, 2006.
5. Culverhouse, D., Farahi, F., Pannell, C.N. ve Jackson, D.A., "Potential of Stimulated Brillouin Scattering as Sensing Mechanism for Distributed Temperature Sensors", Electronics Letters, 25 (14): 913-914, 1989.
6. Ghogomu, N.N. ve Everard, J.K.A., "Coherent Photoconductive Detection of Brillouin Scattering for Temperature Sensing", Electronics Letters, 31 (18): 1606-1607, 1995.
7. Bao, X., Dhliwayo, J., Heron, N., Webb, D.J. ve Jackson, D.A., "Experimental and Theoretical Studies on a Distributed Temperature Sensor Based on Brillouin Scattering", Journal of Lightwave Technology, 13 (7): 1340-1348,
1995.
8. Davis, M.A. ve Kersey, A.D., "Simultaneous Measurement of Temperature and Strain Using Fibre Bragg Gratings and Brillouin Scattering", IEE Proceedings - Optoelectronics, 144 (3): 151-155, 1997.
9. Lecoeuche, V., Hathaway, M.W., Webb, D.J., Pannell, C.N. ve Jackson, D.A., "20-km Distributed Temperature Sensor Based on Spontaneous Brillouin Scattering", IEEE Photonics Technology Letters,12 (10): 1367-1369, 2000.
10. Parker, T.R., Farhadiroushan, M., Feced, R., Handerek, V.A. ve Rogers, A.J., "Simultaneous Distributed Measurement of Strain and Temperature from Noise-Initiated Brillouin
524
Gazi Üniv. Müh. Mim. Fak. Der. Cilt 29, No 3, 2014
OptikFiberliDağinikAlgilamaninYüksekGerilimKablolarindaki^
A. Günday ve ark.
Scattering in Optical Fibers", IEEE Journal of
Quantum Electronics, 34 (4): 645-659, 1998.
11. Bernini, R., Minardo, A., Persiano, G.V., Vaccaro, A., Villacci, D. ve Zeni, L., "Dynamic Loading of Overhead Lines by Adaptive Learning Techniques and Distributed Temperature Sensing", IET Generation, Transmission & Distribution, 1 (6): 912-919, 2007.
12. Diaz, S., Mafang, S.F., Lopez-Amo, M. ve Thevenaz, L., "A High-Performance Optical Time-Domain Brillouin Distributed Fiber Sensor", IEEE Sensors Journal, 8 (7): 1268¬1272, 2008.
13. Soto, M.A., Bolognini, G., Di Pasquale, F., "Enhanced Simultaneous Distributed Strain and Temperature Fiber Sensor Employing Spontaneous Brillouin Scattering and Optical Pulse Coding", IEEE Photonics Technology
Letters, 21 (7): 450-452, 2009.
14. Zou, W., He, Z. ve Hotate, K., "Demonstration of Brillouin Distributed Discrimination of Strain and Temperature Using a Polarization-Maintaining Optical Fiber", IEEE Photonics Technology Letters, 22 (8): 526-528, 2010.
15. Wang, L. ve Shu, C., "Demonstration of Distributed Strain Sensing with the Use of Stimulated Brillouin Scattering-Based Slow Light", IEEE Photonics Journal, 3 (6):
1164-1170, 2011.
16. Angulo-Vinuesa, X., Martin-Lopez, S., Nuno, J., Corredera, P., Ania-Castanon, J.D., Thevenaz, L. ve Gonzalez-Herraez, M., "Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty", Journal of Lightwave Technology, 30 (8): 1060-1065, 2012.
17. Luo, J., Hao, Y., Ye, Q., Hao, Y. ve Li, L., "Development of Optical Fiber Sensors Based on Brillouin Scattering and FBG for On-Line Monitoring in Overhead Transmission Lines", Journal of Lightwave Technology, 31 (10): 1559-1565, 2013.
18. De Souza, K.R.C.P., Fiber Optic Distributed
Sensing Based on Spontaneous Brillouin Scattering, PhD Dissertation, University of Southampton, 1999.
19. Wang, W.H., "The Elastic Properties, Elastic Models and Elastic Perspectives of Metallic Glasses", Progress in Materials Science, 57
(3): 487-656, 2012.
20. Lu, Y., Li, C., Zhang, X. ve Yam, S.,
"Determination of Thermal Residual Strain in Cabled Optical Fiber with High Spatial Resolution by Brillouin Optical Time-Domain Reflectometry", Optics and Lasers in Engineering, 49 (9-10): 1111-1117, 2011.
21. Alahbabi, M., Distributed Optical Fiber Sensors Based on the Coherent Detection of Spontaneous Brillouin Scattering, PhD Dissertation, University of Southampton, 2005.
22. Shang-hui, X., Li, L., "Signal Processing on Brillouin Scattering Based Distributed Fibre Sensors", Symposium on Photonics and
Optoelectronics SOPO 2009, Wuhan, China, 1¬4, 14-16 August 2009.
23. Günday, A., Yılmaz, G. ve Karlık, S.E., "Optik
Fiberli
Dağını
k Algılama Yöntemiyle Enerji Kablosunda Sıcaklık ve Gerginliğin Algılanması", Uludağ Üniversitesi
Mühendislik-Mimarlık Fakültesi Dergisi, 12
(2): 43-52, 2007.
24. Günday, A., Yılmaz, G. ve Karlık, S.E., "Spontaneous Raman Power and Brillouin Frequency Shift Method Based Distributed Temperature and Strain Detection in Power Cables", 5th International Conference on Electrical and Electronics Engineering
ELECO 2007, Bursa, Turkey, 326-330, 5-9 December 2007.
25.
Aras
, F., Oysu, C., "Thermal Analysis of 154 kV Underground Cable Joint Using Finite Element Method", Journal of the Faculty of Engineering and Architecture of Gazi University, 22 (3): 281-286, 2007.
26. Ichino, T., Suzuki, T., Wada, T. ve Sadahiro, T., "Measurement of Conductor Temperature of Power Cable by Optical Fiber Sensor", 7th International Conference on Dielectric Materials Measurements & Applications,
University of Bath, UK., 303-306, 23-26
September 1996.

Thank you for copying data from http://www.arastirmax.com