Buradasınız

Karasal Ekosistemde Karbon Yönetimi ve Önemi

Carbon Management and Importance in Terrestrial Ecosystem

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Recently, researchers indicated great changes in the chemistry of atmosphere due to faster oxidation of soil organic carbon. The increases of greenhouse gasses especially CO2 concentration can affect climate, plant physiology, microbial activity, soil organic matter, and decomposition. Soil can be a store or source for atmospheric CO2. The amount of soil organic carbon stored in the soil or release to the atmosphere depends on net ecosystem productivity and heterotrophic respiration. Soil management systems with intensive cultivation may stimulate oxidation of old organic matter, and create the soil a source of atmospheric CO2. Similarly, almost lost 50% of organic carbon was lost due to conventional tillage systems and cultivation. Minimum tillage and no-till practices reduce oxidation of soil organic carbon and result net C gain. Thus, atmospheric CO2 can be stored in soils using these management systems. The greater level of soil organic carbon can also increase soil quality and fertility. This indicates our soils can be a greater potential to store atmospheric CO2
Abstract (Original Language): 
Son yıllarda yapılan çalısmalar, toprak karbon stoklarındaki hızlı oksidasyonun çevrede özellikle atmosferin kimyasında önemli degismelere neden oldugunu ortaya koymustur. Atmosferdeki sera gazlarından özellikle CO2’nin miktarındaki artıs, iklimi, bitkilerin fizyolojisini, topragın mikrobiyal aktivitesini ve organik maddenin olusumunu ve parçalanmasını önemli ölçüde etkiler. Topraklar atmosferdeki karbon için bir depo olabilecegi gibi kaynak da olabilir. Bir ekosistemde toprakta depolanan veya topraktan atmosfere salınan C miktarı, net ekosistem üretimi ile ekosistemden atmosfere salınan toplam hetetrofik solunuma baglıdır. Arazi kullanımına baglı olarak yogun toprak isleme, topraktaki organik C’un hızla oksidasyonuna neden olarak toprakların atmosferdeki CO2 için bir kaynak olmasına neden olur. Toprakların yıllardır yapılan geleneksel toprak isleme sonucu baslangıç karbonunun yaklasık % 50’si kaybolmus bulunmaktadır. Minimum sürüm ve sürümsüz tarım teknikleri organik karbonun oksidasyonunu azaltarak topragın net C kazanımına neden olur. Böylece çesitli yollarla atmosfere salınmıs olan C’nin yeniden toprakta depolanması saglanabilir. Yüksek organik karbon aynı zamanda topragın kalitesi ve verimligini de artırır. Böylece topraklar atmosferdeki karbonun depolanması için iyi bir kaynak görevi görür.
81-85

REFERENCES

References: 

Batjes, NH. and Sombroek, W.G., 1997. Possibilities for
carbon sequestration in tropical and subtropical
soils. Global Change Biol., 3,161–173.
Bauer,A. and Black, A.L., 1994. Quantification of the
effect of soil organic matter content on soil
productivity. Soil Scie. Soc. Am. J. 58,185-193.
Buyanovsky, G.A., Kucera, C.L., and Wagner, G.H.,
1987. Comparative analyses of carbon dynamics in
native and cultivated ecosystems. Ecology, 68,2023-
2031.
DOE (U.S. Department of Energy). 2000. Carbon
Sequestration Research and Development,
DOE/SC/FE-1, Washington, D.C.
Follett, R.F., 2001. Soil management concepts and carbon
sequestration in cropland soils. Soil Till. Res.,
61,77-91.
IPCC (Intergovernmental Panel on Climate Change)
2001. Climate Change 2001: The scientific basis.
Cambridge University Press, Cambridge, England.
Jacobs, G. K. and Graham, R.L., 2000. Carbon
sequestration and bioenergy feedstock production
seminar, Oak Ridge National Laboratory, Oak
Ridge, TN.
Kern, J.S., and Johnson, M.G., 1993. Conservation tillage
impact on national soil and atmospheric carbon
levels. Soil Sci. Soc. Am. J., 57,200-210.
Koçyigit, R. and Rice, C.W., 2004. Carbon dynamics in
tallgrass prairie and wheat ecosystems. Turk J.
Agric. For., 28,141-153.
Lal, R., Kimble, J., and Follett, R., 1997. Soil quality
management for carbon sequestration. In: Soil
properties and their management for carbon
sequestration. Edited R. Lal et al., United States
Department of Agriculture, Natural Resources
Conservation Services, National Soil Survey Center,
Lincoln, NE.
Lal, R., 2004. Soil Carbon Sequestration Impacts on
Global Climate Change and Food Security. Science.,
304,1623-1627.
Machado, S., Rhinhart, K., and Petrie, S. 2006. Long-term
cropping system effects on carbon sequestration in
eastern Oregon. J. Environ. Qual. 35, 1548-1553.
Mann, L.K., 1986. Changes in soil carbon storage after
cultivation. Soil Sci., 142,279-288.
Marland, G., Fruit, K., and Sedio, R., 2001. Accounting
for sequestered carbon: The question of permanence.
Environ. Sci. Policy., 4,259-268.
R.KOÇYGT
85
Paul, E.A., Paustian, K.H., Elliot, E.T., and Cole, C.V.,
1997. Soil organic matter in temperate
agroecosystems: Long-term experiment in North
America, CRC Press, Boca Raton, FL.
Potter, K.N., and Derner, J.D., 2006. Soil carbon pools in
central Texas: Prairies, restored grasslands, and
croplands. J. Soil water cons. 61, 124-128.
Post, W.M., and Kwon, K.C., 2000. Soil organic carbon
sequestration and land use change: Processes and
potential. Global Change Biol., 6,317-327.
Sainju, U.M., Lenssen, A., Caesar-Thonthat, T., and
Waddell, J., 2006. Carbon sequestration in dryland
soils and plant residue as influenced by tillage and
crop rotation. J. Environ. Qual. 35: 1342-1347.
Sampson, R.N. and Scholes, R.J., 2000. Additional
human-induced activities. In: Land use, land-use
change, and forestry: A special report of the
Intergovermental Panal on Climate Change. Edited
R.T. Watson et al. IPCC.
Sanford, R.L., Saldarriaga, J., K.E. Clark, K.E., Uhe, C.,
Herrera, R., 1985. Amazon rainforest fires. Science,
227,53–55.
Sandra, H., Thomas, A., Jens, L., and Peter, W., 2008. The
effects of tillage system on soil organic carbon under
moist, cold-temperature conditions. Soil Till. Res.
98, 94-105.
Schlesinger, W., 2003. The Carbon Cycle: Human
perturbations and potential management options. In:
Global Climate Change: The Science, Economics
and Politics. Edited J.M. Griffin, Edward Elgar,
Cheltenham, UK.
Sotomayor, D. and Rice, C.W., 1999. Soil air carbon
dioxide and nitrous oxide concentrations in profiles
under tallgrass prairie and cultivation. J. Environ.
Qual., 28,784-793.

Thank you for copying data from http://www.arastirmax.com