Buradasınız

Maksimum ve Minimum Sıcaklıklar ile Karbondioksit Oranlarında Meydana Gelen Artısların Nohut (Cicer Arietinum L.) Verim ve Verim Parametrelerine Etkisi: DSSAT Simülasyon Çalısması

Effect of Increased Maximum, Minimum Temperatures and Chorbondioxde on Chickpea (Cicer Arietinum L.) Yield and Yield Parameters: A DSSAT Chickpea Simulation Study

Journal Name:

Publication Year:

Abstract (2. Language): 
The probable effect of Start of irrigations in Harran Plain, effect of global warming, and development in both city and the industry on daily maximum and minimum temperatures and CO2 increase effect on chickpea was evaluated using DSSAT (Decision Support System for Agrotechnology Transfer) simulation model. Maximum and minimum temperatures were increased with 0, 2, 4, and 6 0C while CO2 was increased with 20 ppm increment from 380 to 440 ppm. Simulation results indicated that the effect of increased minimum temperature and CO2 were limited on yield, biomass, and crop water use (ETc). However, increase in maximum temperatures was noticeable and increased yield and biomass about 35% and ETc about 10%. When new agricultural land open to irrigations, probably the calculated amount of water for the area will not be enough and needs to be increased according to increase in ETc.
Abstract (Original Language): 
Harran ovasında sulamaya baslanması, küresel ısınma etkilerinin belirginlesmesi sehirlesme ve sanayilesmeye paralel olarak maksimum, minimum sıcaklıklarda ve karbondioksit (CO2) oranlarında meydana gelebilecek olası artısların nohut bitkisinde verim, biyomas ve su tüketimine olan etkilerinin arastırılması DSSAT (Decision Support System for Agrotechnology Transfer) simülasyon programı kullanılarak yapılmıstır. Maksimum ve minimum sıcaklıklarda öngörülen sıcaklık artısları 0–6 0C arasında ve CO2 deki artıslar 380–440 ppm olarak belirlenmistir. Simülasyon sonuçlarına göre, minimum sıcaklıklar ve CO2 te meydana artıslar verim, biyomas ve ETc de sınırlı oranda degisimlere neden olmaktadır. Diger taraftan maksimum sıcaklıklarda meydana gelen artıslar verim, biyomas ve ETc de önemli oranda yükselmelere neden olmaktadır. Verim ve biyomas degerlerinde %35 lere varan artıslar saglanabilirken, ETc de %10 düzeyinde artıs görülmektedir. Bölgenin tamamıyla sulamaya açılması ile sulama sezonunda bölge için öngörülen sulama suyu da kullanılan katsayılar sıcaklıkların artması ile yetersiz hale gelecektir.
63-69

REFERENCES

References: 

Booker, F.L., Pursley, W.A., Stefanski, L.A., Miller, J.E.,
Fiscus, E.L., 2005. Comparative responses of
container-versus ground-grown soybean to elevated
carbon dioxide and ozone. Crop Science 45, 883-
895.
Boyer, J.S., Johnson, R.R., Saupe, S.G., 1980. Afternoon
water deficits and grain yields in old and new
soybean cultivars. Agronomy J. 72:981-985.
Conroy, J.P., Seneweera, S., Basra, A.S., Rogers, G.,
Wooller, B.N., 1994. Influence of rising atmospheric
CO, concentrations and temperature on growth,
yield and grain quality of cereal crops. Australian
Journal of Plant Physiology 21, 741-758.
Doorenbos, J., Kassam A.H., 1979. Yield response to
water. Irrigation and drainage paper no: 33. FAORome
193 pp.
Eck, H. V. 1986. Effect of water deficits on yield, yield
components, and water use efficiency of irrigated
corn. Agron. J. 78: 1035-1040.
Eser, D. 1981. Yemeklik Baklagiller. Ankara Üniversitesi
Ziraat Fakültesi Teksir no:59, Ankara.
Ghaffari, A., Cook, H.F., Lee, H.C., 2002. Climate change
and winter wheat management: A modeling scenario
for south-eastern England. Climatic Change 55,
509–533.
Hodges, H.F., Heatherly, L.G., 1983. Principles of water
management for soybean production in Mississippi.
Mississippi Agricultural Forestry Experiment
Station. Bulletin no: 919.
Intergovernmental Panel on Climate Change (IPCC),
2001. Climate Change 1995: The scientific basis of
climate change, Cambridge University Press,
Cambridge, U.K.
Jones, P.D., Wigley, T. M. L., Farmer, G., 1991. Marine
and l and temperature data sets: A comparison and a
look at recent trends, in: Schlesinger, M.E. (Ed.),
Greenhouse gas-induced climatic change. Elsevier,
Amsterdam, pp. 1007- 1023.
Kanber, R. 1997. Sulama. Ç.Ü. Ziraat Fakültesi Genel
Yayın No: 174. Ders Kitapları Yayın No: 52.
Karl, T.R., Kukla, G., Razuvayev, V.N., 1991. Global
warming: Evidence for asymmetric diurnal
temperature change. Geophysical Research Letters
18, 2253-2256.
Kim, H.Y., Lieffering, M., Miura, S., Kobayashi, K.,
Okada, M., Miura, S., 2003. Seasonal changes in the
effects of elevated CO2 on rice at three levels of
nitrogen supply: a free air CO2 enrichment (FACE)
experiment. Global Change Biology 9, 826–837.
Lamm, F. R., D. H. Rogers and H. L. Manges. 1994.
Irrigation scheduling with planned soil water
depletion. Transactions of the ASAE 37(5): 1491 -
1497.
Lawor, H.J., Siddique, K.H.M., Sedgley, R.H., Thurling,
N. 1998. Improvement of cold tolerance and insect
resistance in chickpea and the use of AFLPs for the
identification of molecular markers for these traits.
Acta Hortic. 461, 185-192.
Mahmood, R., 1998. Air temperature variations and rice
productivity in Bangladesh: A comparative study of
the performance of the yield and the CERES-Rice
models. Ecological Modeling 106, 201–212.
Mati, B.M., 2000. The influence of climate change on
maize production in the semi-humid semi-arid areas
of Kenya. Journal of Arid Environments 46, 333–344
Moya, T.B., Ziska, L.H., Namuco, O.S., Olszyk, D., 1998.
Growth dynamics ve genotypic variation in tropical,
field-grown paddy rice (Oryza sativa L.) in response
to increasing carbon dioxide and temperature.
Global Change Biol. 4, 645–656.
Norby, R.J., Wullschleger, S.D., Gunderson, C.A.,
Johnson, D.W., Ceule-Mans, R., 1999. Tree
responses to rising CO2 in field experiments:
Implications for the future forest. Plant, Cell and
Environment 22, 683–714.
Otavio, J.F.de S., Jose, R.N.B.F., Luis, M.A.S., 1994.
Potential effects of global climate change for
Brazilian agriculture applied simulation studies for
wheat, maize and soybeans. in: Implications of
climate change for international agriculture: Crop
modeling study, U.S. Climate Change Division
Report, EPA, 230-B-94-003, pp. 1-28.
Otter-Nacke, S., Godwin, D.C., Ritchie, J.T., 1986.
Testing and validating the CERES-Wheat model in
diverse environments. Agristars YM- 15-00407.
Öztas,E., Bucak, B., Al, V., Kahraman, A. 2007.
Evaluation of Winter Hardiness, Yield and Yield
Components of Chickpea (Cicer arietinum L.)
Cultivars Under Harran Plain Conditions. Harran
Ünüversitesi Ziraat Fak. Dergisi. 11 (3-4). 81-86.
Poorter, H., Navas, M.L., 2003. Plant growth and
competition at elevated CO2: On winners, losers and
functional groups. New Physiology 157, 175– 198.
Rao, D.G., Sinha, S.K., 1994. Impact of climate change on
simulated wheat production in India. in:
Implications of Climate Change for International
Agriculture: Crop Modeling Study, U.S. Climate
Change Division Report EPA 230-B-94- 003, India,
pp. 1-10.
Reddy, K.R., Koti, S., Davidonis, G.H., Reddy, V.R.,
2004. Interactive effects of carbon dioxide and
nitrogen nutrition on cotton growth, development,
yield, and quality. Agronomy Journal 96(4), 1148-
1157.
Sadras, V.O. and Milroy, S.P. 1996. Soil water thresholds
fort he responses of leaf expansion and gas
exchange: a review. Field crop res. 47, 253-266.
Salas, J.D., Delleur, J.W., Yevjevich, V., Lane, W.L.,
1980. Applied modeling of hydrologic series. Water
resources publications, Littleton, Colorado, USA,
484p.
Saxena, N.P., 1990. Status of chickpea in the
Mediterranean basin. In: Present status and future
E.DOGAN, A.KAHRAMAN, H.KIRNAK, B.BUCAK, T.TONKAZ
69
prospects of chickpea crop production and
improvement in the Mediterranean countries.
Seminar Zaragozo Spain. Vol. 9, 11-13 July, 17-24.
Siddique, K.M.H., Brinsmead, R.B., Knigth, R., Knights,
E.J., Paul, J.G., and Rose, I.A., 1999. Adaptation of
chickpea ( cicer arietium L.) and faba bean (Vicia
faba L.) to Australia. In: Knight, R. (Eds.), cool
season food legumes. Kluwer, Adelaide.
Silim, S.N. and Saxena, M.C. 1993. Adaptation of spring
sown chickpea to the Mediterranean basin: I.
Response to moisture supply. Field Crop Res. 34,
121-136.Singh, K. B., 1991. Influence of water
deficit on phenology, growth and dry mater
allocation in chickpea. Field Crop Res. 28, 1-15.
Singh, K. B., 1993. Problems and prospects of stress
resistance breeding in chickpea, in breeding for
stress tolerance in cool season food legumes. Eds.
By. K.B. singh and M.C. Saxena. A Willey-Spayce
Pub. P: 17-35.
Singh, K. B., 1997. Chickpea ( Cicer arietium L.). Field
Crop Res. 53: 161-170.
Singh, K. B., Malhotra, R. S., and Saxena, M. C., 1989.
Chickpea evaluation for cold tolerance under field
condition. Crop Science, 29: 282-285.
Strain, H.H., Svec, W.A. 1966. Extraction, separation,
estimation and isolation of stress degree day
parameter for environmental variability. Agr.
Meteor. 24: 45-55.
Tonkaz, T., Cetin, M., Simsek, M., 2003. Observed
changes of some climatic parameters of Sanliurfa
province (in Turkish with English abstract). Journal
of Agriculture Faculty of Cukurova University 18,
29-38.
Tubiello, F.N., Rosenzweig, C., Volk, T., 1995.
Interactions of CO2, temperature and management
practices. Simulations with a modified version of
CERES-Wheat. Agricultural Systems 49, 135–152.
Turner, N.C. 2003. Adaptation to drought: lessons from
studies with chickpea. Indian Jour. of Plant
Physiology. Spec. issue, 11-17.
Van der Maesen, J.G.M. 1987. Origin, history an
taxonomy of chickpea, p 11-34. In: M.C. Saxean and
K.B. Singh (eds.). The Chickpea. CAB International,
Wallingford, UK.
Yadav, S.S., Kumar, J., Yadav, S.K., Singh, V.S., Turner,
Y.C., and Redden, R. 2006. Evaluation of
helicoverpa and drought resistance in desi and
kabuli chickpea. Plant Genetic Resources, 4: 3, 198-
203.
Zhiqing, J., Ge., D., Chen, H., Fang, J., 1994. Effects of
climate change on rice production and strategies for
adaptation in southern China, in: Implications of
Climate Change for International Agriculture: Crop
Modeling Study, U.S. Climate Change Division
Report EPA, 230-B-94-003, pp. 1-24.

Thank you for copying data from http://www.arastirmax.com