Buradasınız

Markör Destekli Seleksiyonun Bugday Islahında Kullanımı

Using Marker Assisted Selection in Wheat Breeding

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Wheat is a basic nutrition and is the most widely grown crop in the world and Turkey. Since further expansion of cultivated area is not possible, the most efficient way of supplying necessary nutrition for increasing population is to increase yield per area. Increases in wheat yield can be achieved through improvement of varieties which are resistant to disease and insect pests, which have stability across different environments. Selections toward specific purposes during long breeding programs and use of common parents in crosses made the genetic base of cultivated wheat narrow and made it difficult to develop new varieties through classical plant breeding. Marker assisted selection (MAS) is a alternative and helpful method to solve problems of classical plant breeding. Marker assisted selection facilitates transfer of traits are agronomically important and controlled by one or more gene/locus. This technique is a rapid, efficient, reliable and economical selection method and is complement of classical breeding.
Abstract (Original Language): 
Temel besin maddesi olan bugday, Dünya’da ve Türkiye’de en fazla yetistirilen kültür bitkisidir. Ekim alanlarını daha fazla genisletmenin mümkün olmadıgı günümüzde, artan nüfusun besin ihtiyacını karsılamanın en etkili yolu, birim alan verimini artırmaktır. Bugdayda verimdeki artıs ancak hastalık ve zararlılara dayanıklı, stabilitesi yüksek ve her yörenin kendi ekolojik kosullarına uygun çesitlerin gelistirilmesi ile saglanabilir. Uzun yıllar süren seleksiyonlarla genlerin belirli yönde seçilmesi ve melezlemelerde ortak anaçların kullanılması bugdayda genetik varyasyonu daraltmıs ve istenen özellikleri tasıyan çesitlerin klasik bitki ıslahıyla gelistirilmesini zorlastırmıstır. Markör destekli seleksiyon (MAS) klasik bitki ıslahında karsılasılan sorunları çözmek için kullanılan alternatif ve yardımcı bir tekniktir. Markör destekli seleksiyon agronomik olarak önem arz eden ve birden fazla gen veya lokus tarafından kontrol edilen karakterlerin hızlı bir sekilde aktarılmasını saglamaktadır. Bu teknik klasik ıslahı tamamlayıcı, oldukça hızlı, etkin, dogru ve ekonomik bir seleksiyon yöntemidir.
105-112

REFERENCES

References: 

Abdel-Hady, M.S. and Naggar, M.H., 2007. Wheat
genotypic variation and protein markers in relation
with in vitro selection for drought tolerance. Journal
of Applied Sciences Research, 3(10), 926-934.
Anonymous, 2009. Biotechnology Information (NCBI,
Bethesda, MD) GenBank dbEST database.
http://wheat.pw.usda.gov/genome.
Ates Sönmezoglu, Ö., 2006. Mikrosatelit DNA
belirleyicileri kullanılarak yerel makarnalık bugday
çesitlerinin tanımlanması (Yüksek Lisans Tezi).
Gaziosmanpasa Üniversitesi, Fen Bilimleri
Enstitüsü, Tarla Bitkileri Anabilim Dalı, Tokat.
Babu, E.R., Mani, V.P. and Gupta, H.S., 2004. Combining
high protein quality and hard endosperm traits
through phenotypic and marker assisted selection in
maize. 4th International Crop Science Congress.
Brisbane, Australia.
Ö.ATES SÖNMEZOGLU, T.ESERKAYA GÜLEÇ, A.YILDIRIM, N.KANDEMR
111
Beecher, B., Bettge, A., Smidansky, E. and Giroux, M.J.,
2002. Expression of wild-type pinB sequence in
transgenic wheat complements a hard phenotype.
Theor. Appl. Genet., 105, 870-877.
Bolstein, D., White, R.L., Skolnick, M. and Davis, R.W.,
1980. Construction of A Genetic Linkage Map in
Man Using Restriction Fragment Length
Polymorphism. American Journal Human Genetics,
32, 314-331.
Briney, A., Wilson, R., Potter, R.H., Barclay, I., Crosbie,
G. and Appels, R., 1998. A PCR-based marker for
selection of starch and potential noodle quality in
wheat. Mol. Breed., 4, 427-433.
Bustos, A., Rubio, P., Soler, C., Garcia, P. and Jouve, N.,
2001. Marker assisted selection to improve HMWglutenins
in wheat. Euphytica, 119, 69-73.
Cakir, M., Drake-Brockman, F., Ma, J., Jose, K., Connor,
M., Joe Naughton, J., Bussanich, J., Naisbitt, M.,
Shankar, M., McLean, R., Barclay, I., Wilson, R.,
Moore, C. and Loughman, R., 2008. Applications
and challenges of marker-assisted selection in the
Western Australian Wheat Breeding Program.
Ses.library.usyd.edu.au/bitstream.pdf.
Cenci, A., Chantret, N., Xy, K., Gu, Y., Anderson, O.D.
and Fahima, T., 2003. Construction and
characterization of a half million clones: Bacterial
Artificial Chromosome (BAC) library of durum
wheat. Theor. Appl. Genet., 107, 931-939.
Chen, Z., Johnson, J., Bland, D. and Wang, M., 2005.
Pyramiding Genes for Coliar Disease Resistance in
Red Soft Winter Wheat Using DNA Marker
Assisted Selection (MAS). American Society of
Agronomy Abstracts.
Clarke, J.M., Marchylo, B.A., Kovacs, M.I.P., Noll, J.S.,
McCaig, T.N. and Howes, N.K., 1998. Breeding
durum wheat for pasta quality in Canada. Wheat:
Prospects for Global Improvement, Eds: Braun, H.J.
Kluwer Academic Publishers, 229-236, New York.
Cooper, S.R., 1987. Report of the rules commitee. Seed
Science and Technology, 15, 555-575.
Davies, J., Berzonsky, W.A. and Leach, G.D., 2006. A
comparison of marker-assisted and phenotypic
selection for high grain protein content in spring
wheat. Euphytica, 152(1), 117-134.
Dede, B., 2007. Mikrosatelit DNA belirleyicileri
kullanılarak yerel ekmeklik bugday çesitlerinin
tanımlanması (Yüksek Lisans Tezi). Gaziosmanpasa
Üniversitesi, Ziraat Fakültesi, Tarla Bitkileri
Anabilim Dalı, Tokat.
Dubcovsky, J., 2004. Symposıum on genomics and plant
breeding: the experience of the initiative for future
agricultural and food systems. Crop Science, 44,
1895-1898
Feuillet, C., Travella, S., Stein, N., Albar, L., Nublat, A.
and Keller, B., 2003. Map-based isolation of the leaf
rust disease resistance gene Lr10 from the hexaploid
wheat (Triticum aestivum L.) genome. Proc. Natl.
Acad. Sci. USA 100, 15253-15258.
Francia, E., Tacconi, G., Crosatti, C., Barabaschi, D.,
Bulgarelli, D., Dall’Aglio, E. and Valè, G., 2005.
Marker assisted selection in crop plants. Plant Cell,
Tissue and Organ Culture, 82, 317-342.
Gupta, P.K. and Rustgi, S., 2004. Molecular markers form
the transcribed/expressed region of the genome in
higher plants. Funct Integr Genomics, 4, 139-162.
Hamada, H., Petrino, M.G. and Kakunaga, T., 1982. A
Novel Repeated Element with Z-DNA-Forming
Potential is Widely Found Evolutionary Diverse
Eucaryotic Genomes. Proceedings of National
Academy of Science, 79, 6465-6469, USA.
Huang, X.Q., Wang, L.X., Xu, M.X. and Röder, M.S.,
2003a. Microsatellite mapping of the powdery
mildew resistance gene Pm5e in common wheat
(Triticum aestivum L.). Theor Appl. Genet., 106,
858-865.
Huang, L., Brooks, S.A., Li, W.L., Fellers, J.P., Trick,
H.N. and Gill, B.S., 2003b. Map-based cloning of
leaf rust resistance gene Lr21 from the large and
polyploid genome of bread wheat. Genetics, 164,
655-664.
Hudcovicová, M., Šudyová, V., Šliková, S., Gregová, E.,
Kraic, J., Ordon, F., Mihálik, D., Horevaj, V. and
Šramková, Z., 2008. Marker-assisted selection for
the development of improved barley and wheat
lines. Acta Agronomica Hungarica, 56(4), 385-392.
Kolmer, J.A., 1996. Genetics of resistance to wheat leaf
rust. Annu. Rev. Phytopathol, 34, 435-455.
Li, G., Fang, T., Zhang, H., Xie, C., Li, H., Yang, T.,
Nevo, E., Fahima, T., Sun, Q. and Liu, Z., 2009.
Molecular identification of a new powdery mildew
resistance gene Pm41 on chromosome 3BL derived
from wild emmer (Triticum turgidum var.
dicoccoides). Theor Appl Genet., 119 (3), 531-539.
Lowe, A.J., Hinotte, O. and Guarino, L., 1996.
Standardization of Molecular Genetic Techniques
for The Characterization of Germplasm Collections:
The Caase of Random Amplified Polymorphic DNA
(RAPD). Plant Genetic Resources Newsletter, 107,
50-54.
Mohan, M., Nair, S., Bhagwat, A., Krishna, T.G., Yano,
M., Bhatia, C.R. and Sasaki, T., 1997. Genome
mapping, moleküler markers and marker-assisted
selection in crop plants. Mol. Breed., 3, 87-103.
Moullet, O., Fossati, D., Mascher, F., Guadagnolo, R. and
Schori, A., 2009. Use of marker-assisted selection
(MAS) for pyramiding two leaf rust resistance
genes, (Lr9 and Lr24) in wheat.
(www.agroscope.admin.ch/data/publikationen.pdf)
Özcan, S., Gürel, E. ve Babaoglu, M., 2001. Bitki
Biyoteknolojisi II. Genetik Mühendisligi ve
Uygulamaları, Konya.
Peng, J.R., Richards, D.E., Hartley, N.M., Murphy, G.P.,
Devos, K.M. and Flintham, J.E., 1999. ‘Green
revolution’ genes encode mutant gibberellin
response modulators. Nature, 400, 256-261.
Pogna, N.E., Autran, J.C., Mellini, F., Lafiandra, D. and
Feillet, P., 1990. Chromosome 1B-encoded gliadins
and glutenin subunits in durum wheat: Genetics and
relationship to gluten strength. Journal of Cereal
Science, 11, 15-34.
Rafalski, A., Morgante, M., Powell, W., Vogel, J.M. and
Tingey, S.V., 1996. Generating and Using DNA
Markers in Plants. In: Birren B., Lai E. (Eds.):
Analysis of Non-Mammalian Genomes - A Practical
Guide. Academic Pres., New York.
Markör Destekli Seleksiyonun Bugday Islahında Kullanımı
112
Ravel, C., Praud, S., Canaguier, A., Dufour, P., Giancola,
S., Balfourier, F. and Charmet, G., 2007. DNA
sequence polymorphisms and their application to
bread wheat quality. Euphytica, 158, 331-336.
Sipahi, H., 2004. Türkiye’de tescili yapılan arpa
çesitlerinin hordein elektroforegramlarının
belirlenmesi ve bunların malt kalitesi ile iliskisinin
saptanması (Doktora Tezi). Ankara Üniversitesi,
Gıda Mühendisligi Anabilim Dalı, Ankara.
Talbert, T.E., Blake, N.K., Chee, P.W., Blake, T.K. and
Magyar, G.M., 1994. Evaluation of Sequence-
Tagged-Site PCR Products As Molecular Markers in
Wheat. Theoretical and Applied Genetics, 87, 789-
794.
Vos, P., Hogers, M., Bleeker, M., Reijans, M., Lee, T.,
Hornes, M., Frijters, A., Pot, J., Pelemen, J., Kuiper,
M. and Zabeau, M., 1995. AFLP; A New Technique
for DNA Fingerprinting . Nucleic Acid Research,
23, 4407-4414.
Watson, B., 2008. Use of Marker Assisted Selection for
the Introgression of Quality Traits from Australian
into Chinese Wheats. University of Southern
Queensland. Master of Science thesis (PhD).
Welsh, J. and Mcclelland, M., 1990. Fingerprinting
Genomes Using PCR with Arbitrary Primers.
Nucleic Acids Research, 18, 7313-7318.
Yahiaoui, N., Srichumpa, P., Dudler, R. and Keller, B.,
2004. Genome analysis at different ploidy levels
allows cloning of the powdery mildew resistance
gene Pm3b from hexaploid wheat. Plant J., 37, 528-
538.
Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M.,
Fahima, T. and Dubcovsky, J., 2003. Positional
cloning of wheat vernalization gene VRN1. Proc.
Natl. Acad. Sci., 100, 6263-6268.
Yan, L., Loukoianov, A., Tranquilli, G., Blechl, A., Khan,
I.A. and Ramakrishna, W., 2004. The wheat VRN2
gene is a flowering repressor down-regulated by
vernalization. Science, 303, 1640-1644.
Yıldırım, A. ve Kandemir, N., 2001. Genetik Markörler ve
Analiz Metotları. Bitki Biyoteknolojisi II., Bölüm
23, 334-363.
Yıldırım, A., 2005. Molecular marker facilitated
pyramiding of resistance genes for fungal diseases of
wheat. Workshop on Genomics and Marker Assisted
Selection (MAS) in Plant Breeding. 3-7 Ekim 2005
(Sunulu Bildiri), zmir.
Yıldırım, A., 2008. Bitki Islahında Markörler Yardımıyla
Seleksiyon. (googlepages.com/AY-Markörler
Yardımıyla Seleksiyon.pdf.).
Yıldırım, A., Karadag, Y., Sakin, M.A., Gökmen, S.,
Kandemir, N., Akkaya, M.S. and Yıldırım, F., 2004.
Transfer of stripe rust resistance gene Yr26 to
Turkish wheats using microsatellite markers. Cereal
Research Communications, 32(1), 25-30.
Yıldırım, A., Ates Sönmezoglu, Ö., Eserkaya, T.,
Kandemir, N. ve Sayaslan, A., 2009. Makarnalık
Bugdayda Modern Teknolojik Yöntemlerle
Hızlandırılmıs Kalite Islahı. Türkiye VIII. Tarla
Bitkileri Kongresi, 19-22 Ekim 2009. Hatay. Sunulu
Bildiri.
Zamani, M.J., Bihamta, M.R., Naserian, B., Hallajian,
M.T. and Shu, Q.Y., 2009. Selection of Wheat
Mutant Genotypes Carrying HMW Glutenin Alleles
Related to Baking Quality by Using PCR (STS
method). Induced Plant Mutations in the Genomics
Era. Food and Agriculture Organization of the
United Nations, 436-438, Rome.

Thank you for copying data from http://www.arastirmax.com