Buradasınız

Geri dönüşümlü iskeminin miyokard hasarı ile ilgili biyokimyasal belirteçlerin serum düzeyleri üzerine olan etkisinin araştırılması

Investigation of the effect of the reversible myocardial ischemia on serum levels of biochemical indicators associated with myocardial injury

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
The aim of this study was to evaluate the effect of the reversible myocardial ischemia induced by treadmill exercise test and determined by gated myocardial perfusion SPECT on the secretion of AST and LDH localized in the cytoplasm of the myocytes. Fifty one patients with risk factors of coronary artery disease were enrolled into the study. The patients were divided into three subgroups as normal (24), ischemia (17) and infarct (10) according to the results of gSPECT performed after treadmill exercise test. Preexercise, postexercise and 4th hr serum LDH and AST levels of the patients were measured. According to the enzyme results, there were no statistically significant differences among the subgroups (p>0.05). Postexercise AST and LDH levels were significantly higher than those of the preexercise in the normal group (p=0.011, p=0.001, respectively). Postexercise AST levels were significantly higher than those of the preexercise in the ischemia group (p=0.002). Preexercise and postexercise levels of the enzymes were not statistically different in the infarct group. Functions of the left ventricle were prominently decreased in patients with myocardial infarct and severity of the ischemia in this group was significantly higher than those of the other subgroups (p<0.001). There were not statistically significant differences between the scintigraphic parameters of normal and ischemia subgroups, except for STSS (p>0.05 and p<0.001, respectively). There was not a significant correlation between the enzyme levels and scintigraphic parameters. In conclusion, reversible myocardial ischemia seems not to have prominent effect on the secretion of the non-specific biochemical markers of myocardial injury.
Abstract (Original Language): 
Çalışmanın amacı, egzersiz ile tetiklenen ve "gated" miyokard perfüzyon sintigrafisi (gSPECT) ile saptanan miyokard iskemisinin, miyosit sitoplazmasında lokalize aspartat aminotransferaz (AST) ve laktat dehidrogenaz (LDH) enzimlerinin salınımı üzerine olan etkisini araştırmaktır. Koroner arter hastalığı yönünden risk faktörlü 51 olgu çalışmaya dahil edildi. "Gated" miyokard perfüzyon sintigrafisi sonuçlarına göre olgular normal (24), iskemi (17) ve infarkt (10) olmak üzere üç gruba ayrıldı. Olguların, efor öncesi, sonrası ve 4. saatteki venöz kanlarından, AST ve LDH ölçümleri yapıldı. Gruplar arasında her iki enzim düzeyleri için istatistiksel olarak anlamlı bir fark bulunmadı (p>0.05). Normal grupta, egzersiz sonrası AST ve LDH değerleri egzersiz öncesi değerlere göre anlamlı olarak yüksek bulunmuştur (sırası ile, p=0.011 ve p=0.001). İskemi grubunda ise egzersiz sonrası AST değerleri egzersiz öncesi değerlere göre istatistiksel olarak anlamlı düzeyde yüksektir (p=0.002). İnfarktlı olguların sol ventrikül fonksiyonları diğer gruplara göre anlamlı derecede bozulmuştur (p<0.001) ve bu gruptaki iskeminin şiddeti diğer gruplara göre istatistiksel olarak anlamlı yüksektir (p<0.001). Normal ve iskemi grupları arasında ise STSS hariç (p<0.001) diğer parametreler için istatistiksel olarak anlamlı bir fark bulunmamıştır (p>0.05). Enzim düzeyleri ile sintigrafik parametreler arasında anlamlı bir korelasyon saptanmamıştır. Sonuçta, geri dönüşümlü miyokard iskemisinin sitoplazmik yerleşimli ve miyokarda özgül olmayan serum belirteçlerinin salınımı üzerine belirgin bir etkisinin bulunmadığı saptanmıştır.
87-93

REFERENCES

References: 

1. Ladue JS, Wroblewski F, Karmen A.
Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction. Science
1954; 120 (3117): 497-499.
2. Spieckermann PG, Nordbeck H,
Preusse CJ. From heart to plasma. In:
Hearse DJ (ed). Enzymes in
Cardiology. John Wiley and Sons,
Ireland, 1979: 81-95.
3. Batsakis JG, Capps RD, Briere RO.
Clinical experience with a new assay
for LDH and LDH isoenzyme activities. Mich Med 1967; 66: 182-186.
4. Lott JA, Stang JM. Serum enzymes
and isoenzymes in the diagnosis and
differential diagnosis of myocardial
ischemia and necrosis. Clin Chem
1980; 26: 1241-1250.
5. Leung FY, Henderson AR. Thin-layer
agarose electrophoresis of lactate
dehydrogenase isoenzymes in serum: a
note on the method of reporting and
on the lactate dehydrogenase isoenzyme-1/isoenzyme-2 ratio in acute
myocardial infarction. Clin Chem
1979; 25: 209-211.
6. Blomberg DJ, Kimber WD, Burke
MD. Creatine kinase isoenzymes.
Predictive value in the early diagnosis
of acute myocardial infarction. Am J
Med 1975; 59: 464-469.
7. Collinson PO. Cardiac markers into
the new millenium. Ann Clin
Biochem 2000; 37: 109-113.
8. Peivandi AA, Dahm M, Opfermann
UT, et al. Comparison of cardiac troponin I versus T and creatine kinase
MB after coronary artery bypass grafting in patients with and without perioperative myocardial infarction. Herz
2004; 29: 658-664.
9. Panteghini M, Apple FS, Christenson
RH, Dati F, Mair J, Wu AH. Use of
biochemical markers in acute coronary
syndromes. IFCC Scientific Division,
Committee on Standardization of
Markers of Cardiac Damage.
International Federation of Clinical
Chemistry. Clin Chem Lab Med
1999; 37: 687-693.
10.Apple FS, Murakami M, Panteghini
M, et al. IFCC Committee on
Standardization of Markers of Cardiac
Damage. International survey on the
use of cardiac markers. Clin Chem
2001; 47: 587-588.
11.Sakai K, Gebhard MM, Spieckermann
PG. A diminution of enzyme release
in the anoxic guinea-pig heart
observed after cardoiplegic treatment.
Clin Exp Pharmacol Physiol 1976; 3:
195-198.
12.Sakai K, Gebhard MM, Spieckermann
PG, Bretschneider HJ. Enzyme release
resulting from total ischemia and
reperfusion in the isolated, perfused
guinea pig heart. J Mol Cell Cardiol
1975; 7: 827-840.
13.Hearse DJ. Cellular damage during
myocardial ischemia: metabolic
changes leading to enzyme leakage.
In: Hearse DJ (ed). Enzymes in
Cardiology. John Wiley and Sons,
Ireland, 1979: 1-32.
14.Malmberg P. Aspartate aminotransferase activity in dog heart lymph after
myocardial infarction. Scand J Clin
Lab Invest 1972; 30: 153-158.
15.Malmberg P. Time course of enzyme
escape via heart lymph following
myocardial infarction in the dog.
Scand J Clin Lab Invest 1972; 30: 405-
409.
16.Ahmed SA, Williamson JR, Roberts R,
Clark RE, Sobel BE. The association
of increased plasma MB CPK activity
and irreversible ischemic myocardial
injury in the dog. Circulation 1976;
54:187-192.
17.Wu AHB, Ford L. Release of cardiac
troponin in acute coronary syndromes:
ischaemia or necrosis? Clin Chim Acta
1999; 284: 161-174.
18.Ishikawa Y, Saffitz JE, Mealman TL,
Grace AM, Roberts R. Reversible
myocardial ischemic injury is not associated with increased creatine kinase
activity in plasma. Clin Chem 1997;
43: 467-475.
19.Heyndrickx GR, Amano J, Kenna T, et
al. Creatine kinase release not associated with myocardial necrosis after short
periods of coronary artery occlusion in
conscious baboons. J Am Coll Cardiol
1985; 6: 1299-1303.
20.Smith AF. Enzymes and routine diagnosis. In: Hearse DJ (ed). Enzymes in
Cardiology. John Wiley and Sons,
Ireland, 1979: 199-235.
21.Iskandrian AE, Germano G,
VanDecker W, et al. Validation of left
ventricular volume measurements by
gated SPECT Tc-99m sestamibi imaging. J Nucl Cardiol 1998; 5: 574-578.
22.Yoshioka J, Hasegawa S, Yamaguchi
H, et al. Left ventricular volumes and
ejection fraction calculated from quantitative electrocardiographic-gated
99mTc-teterofosmin myocardial
SPECT. J Nucl Med 1999; 40:1693-
1698.
23.Paul AK, Hasegawa S, Yoshioka J,
Yamaguchi H, Tsujimura E,
Nishimura T. Assessment of left ventricular function by gated myocardial
perfusion and gated blood-pool
SPECT: can we use the same reference database? Ann Nucl Med 2000;
14: 75-80.
24.Germano G, Kiat H, Kavanagh PB, et
al. Automatic quantification of ejection fraction from gated myocardial
perfusion SPECT. J Nucl Med 1995;
36: 2138-2147.
25.Hachamovitch R, Berman DS. The
use of nuclear cardiology in clinical
decision making. Semin Nucl Med
2005; 35: 62-72.
26.Kang X, Berman DS, Van Train KF, et
al. Clinical validation of automatic
quantitative defect size in rest technetium-99m-sestamibi myocardial
perfusion SPECT. J Nucl Med 1997;
38: 1441-1446.
27. Hachamovitch R, Berman DS, Kiat
H, et al. Exercise myocardial perfusion
SPECT in patients without known
coronary artery disease: incremental
prognostic value and impact on subsequent patient management.
Circulation 1996; 93: 905-914.
28.Mark DB, Hlatky MA, Lee KL,
Harrell FE Jr, Califf RM, Pryor DB.
Localizing coronary artery obstructions with the exercise treadmill test.
Ann Intern Med 1987; 106: 53-55.
29.Hlatky MA, Pryor DB, Harrell FE Jr,
Califf RM, Mark DB, Rosati RA.
Factors affecting sensitivity and specificity of exercise electrocardiography.Cilt 48 · Sayý 2· Gülhane TD Geri dönüþümlü iskemi ve biyokimyasal belirteçler · 93
Am J Med 1984; 77: 64-71.
30.Simonetti I, Rezai K, Rossen JD, et al.
Physiological assessment of sensitivity
of noninvasive testing for coronary
artery disease. Circulation 1991; 83
(suppl III): 43-49.
31.Shaw LJ, Peterson ED, Shaw LK, et al.
Use of a prognostic treadmill score in
identifying diagnostic coronary disease
subgroups. Circulation 1998; 98:
1622-1630.
32.McNeer JF, Margolis JR, Lee KL, et al.
The role of the exercise test in the
evaluation of patients for ischemic
heart disease. Circulation 1978; 57: 64-
70.
33.Marmor AT, Klein R, Plich M,
Groshar D, Schneeweiss A. Elevated
CK-MB isoenzyme after exercise
stress test and atrial pacing in patients
with ischemic heart disease. Chest
1988; 94: 1216-1220.
34.Ashmaig ME, Starkey BJ, Ziada AM,
Amro AA, Sobki SH, Ferns GA.
Changes in serum concentrations of
markers of myocardial injury following treadmill exercise testing in
patients with suspected ischaemic
heart disease. Med Sci Monit 2001; 7:
54-57.
35.Hovels-Gurich HH, Kunz D, Seghaye
M, Miskova M, Messmer BJ, von
Bernuth G. Results of exercise testing
at a mean age of 10 years after neonatal
arterial switch operation. Acta Paediatr
2003; 92: 190-196.
36.Sorichter S, Mair J, Koller A, et al.
Release of muscle proteins after downhill running in male and female subjects. Scand J Med Sci Sports 2001; 11:
28-32.
37.Wahi S, Chandrashekhar Y, Varma S,
et al. Enzymes and exertion. Chest
1990; 97: 1268.
38.Berman DS, Hachamovitch R, Kiat H,
et al: Incremental value of prognostic
testing in patients with known or suspected ischemic heart disease: a basis
for optimal utilization of exercise technetium-99 m sestamibi myocardial
perfusion single-photon emission
computed tomography. J Am Coll
Cardiol 1995; 26: 639-647.
39.Maddahi J, Van Train K, Prigent F, et
al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of
coronary artery disease: optimization
and prospective validation of a new
technique. J Am Coll Cardiol 1989;
14: 1689-1699.
40.Van Train KF, Areeda J, Garcia EV, et
al. Quantitative same-day rest-stress
technetium-99m-sestamibi SPECT:
definition and validation of stress normal limits and criteria for abnormality.
J Nucl Med 1993; 34:1494-1502.
41.Benoit T, Vivegnis D, Foulon J, Rigo
P. Quantitative evaluation of myocardial single-photon emission tomographic imaging: application to the
measurement of perfusion defect size
and severity. Eur J Nucl Med 1996; 23:
1603-1612.
42.Patterson RE, Horowitz SF, Eisner
RL. Comparison of modalities to diagnose coronary artery disease. Semin
Nucl Med 1994; 24: 286-310.
43.Mair J. Tissue release of cardiac markers: from physiology to clinical applications. Clin Chem Lab Med 1999; 37:
1077-1084.

Thank you for copying data from http://www.arastirmax.com