Buradasınız

Akciğer kanserli hastalarda primer tümör tanısı ve evrelemede Tc-99m glutatyon sintigrafisinin rolü: ön sonuçlar

Tc-99m glutathione scintigraphy in the detection of primary tumor and staging of patients with lung cancer: a preliminary report

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this preliminary study was to investigate the potential role of Tc-99m GSH scintigraphy in the diagnosis and staging of patients with lung cancer. Twenty five patients with newly biopsy-proven primary lung cancer were included in this study. Whole body imaging was performed at the 1st and 3rd hours after the injection of 15 mCi (555 MBq) of Tc-99m GSH. Thorax SPECT imaging was also performed at the 1st hour in all patients. SPECT and whole body imaging showed increased tracer uptake in primary lesion sites in 23 and 22 of 25 patients with lung cancer, respectively. The tumor/background activity ratios in early and late images were 1.29 to 2.35 (mean 1.74) and 1.41 to 4.03 (mean 2.01), respectively. Mediastinum could not be clearly evaluated due to high blood pool activity of Tc-99m GSH. According to the results of this study, detection rate of distant metastases with Tc-99m GSH is not adequate. As a nonspecific tumor imaging agent, Tc-99m GSH scintigraphy has not enough specificity for using in a routine fashion in lung cancer. However, it could be a promising radiopharmaceutical due to having potential to visualize in vivo GSH metabolism which is important in chemo- or radio-therapy resistance.
Abstract (Original Language): 
Bu öncü çalışmanın amacı akciğer kanserli hastalarda tanı ve evrelemede Tc-99m GSH sintigrafisinin potansiyel rolünün araştırılmasıdır. Bu çalışmaya yeni tanı konulmuş ve biyopsi ile tanısı doğrulanmış 25 akciğer kanserli hasta dahil edildi. On beş mCi (555 MBq) Tc-99m GSH enjeksiyonu sonrası 1. ve 3. saatte tüm vücut taraması ve 1. saatte toraks SPECT görüntülemesi yapılmıştır. SPECT ve tüm vücut taraması sırası ile 25 hastanın 23 ve 22’sinde primer tümöre ait artmış aktivite tutulumu saptanmıştır. Tümör/geri plan aktivitesi erken ve geç görüntülerde sırası ile 1.29-2.35 (ortalama 1.74) ve 1.41-4.03 (ortalama 2.01) olarak bulunmuştur. Tc-99m GSH’a ait yüksek kan havuzu aktivitesi nedeni ile mediyastinal lenf nodları net olarak değerlendirilememiştir. Çalışma sonuçlarımıza göre Tc-99m GSH sintigrafisinin uzak metastaz tespitindeki rolü yeterli duyarlılıkta bulunmamıştır. Tc-99m GSH sintigrafisi, non-spesifik bir tümör görüntüleme ajanı olarak akciğer kanserlerinde rutinde kullanım için yeterli özgüllüğe sahip değildir. Bununla birlikte, kemo- veya radyo-terapi direncinin değerlendirilmesinde öneme sahip olabilecek GSH metabolizmasını in vivo gösterebilme potansiyeli nedeniyle umut verici bir ajan olduğu düşünülmektedir.
235-238

REFERENCES

References: 

References
1. Reed DJ. Regulation of reductive processes by
glutathione. Biochem Pharmacol 1986; 35: 7-13.
2. Andersen HR, Nielsen JB, Nielsen F, Grandjean P.
Antioxidative enzyme activities in human erythrocytes.
Clin Chem 1997; 43: 562-568.
3. Reed DJ. Glutathione: toxicological implications. Annu
Rev Pharmacol Toxicol 1990; 30: 603-631.
4. Harlan JM, Levine JD, Callahan KS, Schwartz BR,
Harker LA. Glutathione redox cycle protects cultured
endothelial cells against lysis by extracellularly
generated hydrogen peroxide. J Clin Invest 1984; 73:
706-713.
5. Meister A, Anderson ME. Glutathione. Annu Rev
Biochem 1983; 52: 711-760.
6. Reed DJ, Fariss MW. Glutathione depletion and
susceptibility. Pharmacol Rev 1984; 36 (Suppl 2):
25S-33S.
7. Rahman I. Regulation of nuclear factor-kappa B, activator
protein-1, and glutathione levels by tumor necrosis
factor-alpha and dexamethasone in alveolar epithelial
cells. Biochem Pharmacol 2000; 60: 1041-1049.
8. Ercan MT, Aras T, Aktas A, Kaya S, Bekdik CF.
Accumulation of 99mTc-glutathione in head and neck
tumors. Nuklearmedizin 1994; 33: 224-228.
9. Ercan MT, Unlenen E, Aktas A. 99Tcm-glutathione for
imaging inflammatory lesions. Nucl Med Commun
1994; 15: 533-539.
10. Duman Y, Burak Z, Ercan MT, et al. Clinical evaluation
of metastases of malignant melanoma imaging with
99Tcm-glutathione and 99Tcm-anti melanoma
antibody: a comparative study. Nucl Med Commun
1995; 16: 927-935.
11. Mock D, Whitestone B, Freeman J. Gamma-glutamyl
transpeptidase activity in human oral squamous cell
carcinoma. Oral Surg Oral Med Oral Pathol 1987; 64:
197-201.
12. Dawson JR, Vahakangas K, Jernstrom B, Moldeus P.
Glutathione conjugation by isolated lung cells and
the isolated, perfused lung. Effect of extracellular
glutathione. Eur J Biochem 1984; 138: 439-443.
13. O’Brien ML, Tew KD. Glutathione and related enzymes
in multidrug resistance. Eur J Cancer 1996; 32:
967-978.
14. Hanigan MH, Ricketts WA. Extracellular glutathione is a
source of cysteine for cells that express gamma-glutamyl
transpeptidase. Biochemistry 1993; 32: 6302-6306.
15. Hanigan MH, Frierson HF Jr, Brown JE, Lovell MA, Taylor
PT. Human ovarian tumors express gamma-glutamyl
transpeptidase. Cancer Res 1994; 54: 286-290.
16. Cook JA, Pass HI, Iype SN, et al. Cellular glutathione and
thiol measurements from surgically resected human
lung tumor and normal lung tissue. Cancer Res 1991;
51: 4287-4294.
17. Oberli-Schrammli AE, Joncourt F, Stadler M, et al.
Parallel assessment of glutathione-based detoxifying
enzymes, O6-alkylguanine-DNA alkyltransferase and Pglycoprotein as indicators of drug resistance in tumor
and normal lung of patients with lung cancer. Int J
Cancer 1994; 59: 629-636.
18. Dempo K, Elliott KA, Desmond W, Fishman WH.
Demonstration of gamma-glutamyl transferase, alkaline
phosphatase, CEA and HCG in human lung cancer.
Oncodev Biol Med 1981; 2: 21-37.
19. Griffith OW, Bridges RJ, Meister A. Transport of gammaglutamyl amino acids: role of glutathione and gammaglutamyl transpeptidase. Proc Natl Acad Sci 1979; 76:
6319-6322.
20. Anderson ME, Meister A. Transport and direct utilization
of gamma-glutamylcyst(e)ine for glutathione synthesis.
Proc Natl Acad Sci 1983; 80: 707-711.
21. Blair SL, Heerdt P, Sachar S, et al. Glutathione metabolism
in patients with non-small cell lung cancers. Cancer Res
1997; 57: 152-155.
22. Biaglow JE, Varnes ME, Clark EP, Epp ER. The role of
thiols in cellular response to radiation and drugs. Radiat
Res 1983; 95: 437-455.
23. Hamilton TC, Winker MA, Louie KG, et al. Augmentation
of adriamycin, melphalan, and cisplatin cytotoxicity in
drug-resistant and sensitive human ovarian carcinoma
cell lines by buthionine sulfoximine mediated
glutathione depletion. Biochem Pharmacol 1985; 34:
2583-2586.
24. Lee FYF, Flannery DJ, Siemann DW. Prediction of
tumor sensitivity to 4-hydroperoxycyclophosphamide
by a glutathione-targeted assay. Br J Cancer 1991; 63:
217-222.
25. Richardson ME, Siemann DW. Thiol manipulation
as a means of overcoming drug resistance in a novel
cyclophosphamide-induced resistant cell line. Int J
Radiat Oncol Biol Phys 1992; 22: 781-784.
26. Suzukake K, Petro BJ, Vistica DT. Reduction in glutathione
content of L-PAM resistant L1210 cells confers drug
sensitivity. Biochem Pharmacol 1982; 31: 121-124.
27. Lee FYF, Siemann DW, Sutherland RM. Changes
in cellular glutathione content during adriamycin
treatment in human ovarian cancer, a possible indicator
of chemosensitivity. Br J Cancer 1989; 60: 291-298.
28. Mitchell JB, Cook JA, DeGraff W, Glatstein E, Russo
A. Glutathione modulation in cancer treatment:
Will it work? Int J Radiat Oncol Biol Phys 1989; 16:
1289-1295.
29. Ku RH, Billings RE. The role of mitochondrial glutathione
and cellular protein sulfhydryls in formaldehyde
toxicity in glutathione-depleted rat hepatocytes. Arch
Biochem Biophys 1986; 247: 183-189.
30. Lewis AD, Hayes JD, Wolf CR. Glutathione and
glutathione-dependent enzymes in ovarian
adenocarcinoma cell lines derived from a patient
before and after the onset of drug resistance: intrinsic
differences and cell cycle effects. Carcinogenesis 1988;
9: 1283-1287

Thank you for copying data from http://www.arastirmax.com