Buradasınız

Warfarin tedavisinin koroner kalsifikasyonda rolü var mıdır?

Does warfarin therapy have a role in coronary calcification?

Journal Name:

Publication Year:

Abstract (2. Language): 
Some reports have revealed that warfarin inhibits the matrix carboxyglutamic acid protein (MGP), which inhibits calcification. Treatment of rats with warfarin at doses that inhibit the carboxylation of MGP causes rapid calcification of elastic lamellae of arteries and of aortic heart valves and increased expression of MGP-mRNA in the calcifying artery. Therefore warfarin use might result in increased calcification of vessel wall. Our aim was to investigate whether warfarin causes excess calcification in coronary arteries. A total of 39 patients (with a mean age of 54±15 years) who underwent prosthetic heart valve surgery 66±46 months ago were enrolled into the study. The control subjects (n=28) were selected from those people without any medical problem with a mean age of 52±11 years. Multidetector computed tomography was used to identify the calcium score of the coronary arteries. We found that coronary calcium score was similar between the study and control groups. In addition, the length of warfarin use was not correlated with the calcium score in the patient group. Male gender, hypertension, and LDL-C, but not warfarin usage were independent predictors for coronary calcification. The results of our study imply that warfarin has no effect on coronary calcification at least in middle aged adult humans.
Abstract (Original Language): 
Warfarin tedavisinin koroner kalsifikasyonda rolü var mıdır? Warfarinin kalsifikasyonu inhibe eden matriks karboksiglutamik asid proteinini (MGP) inhibe ettiği bildirilmektedir. MGP karboksilasyonunu inhibe eden dozlarda K vitamini antagonisti olan warfarin verilen ratlarda arterlerin elastik laminalarında ve aort kapağında hızla kalsifikasyon gelişmekte, kalsifiye arterlerde de MGP-mRNA ekspresyonunun artışına neden olmaktadır. Bu nedenle warfarin kullanımı damar duvarında kalsifikasyon artışıyla sonuçlanabilir. Biz çalışmamızda warfarinin koroner arterlerde kalsifikasyona neden olup olmadığını araştırmayı amaçladık. Ortalama 66±46 ay önce protez kapak cerrahisi uygulanmış 39 hasta (ortalama yaşları 54±15 yıl) çalışmaya alındı. Kontrol grubu (n=28) herhangi bir tıbbi problemi olmayan yaş ortalamaları 52±11 yıl olanlardan seçildi. Tüm olgularda multidedektör bilgisayarlı tomografi ile kalsiyum skoru belirlendi. Çalışma ve kontrol gruplarında koroner kalsiyum skorunu birbirine benzer bulduk. Ek olarak hasta grubunda warfarin kullanım süresi koroner kalsiyum skoru ile korele değildi. Erkek cinsiyet, hipertansiyon ve LDL-kolesterol koroner kalsifikasyonun ba- ğımsız belirteçleri olarak bulundu. Çalışmamızın sonuçları en azından orta yaşlı erişkinlerde warfarin kullanımının koroner kalsifikasyon üzerinde etkisinin olmadığını göstermektedir.
26-30

REFERENCES

References: 

1. Price PA, Faus SA, Williamson MK. Warfarin causes
rapid calcification of the elastic lamellae in rat arteries
and heart valves. Arterioscler Thromb Vasc Biol 1998;
18: 1400-1407.
2. Munroe PB, Olgunturk RO, Fryns JP, et al. Mutations
in the gene encoding the human matrix Gla protein
cause Keutel syndrome. Nat Genet 1999; 21: 142-144.
3. Teebi AS, Lambert DM, Kaye GM, Al-Fifi S, Tewfik TL,
Azouz EM. Keutel syndrome: further characterization
and review. Am J Med Genet 1998; 77: 182-187.
4. Keutel J, Jorgensen G, Gabriel P. A new autosomal
recessive syndrome: peripheral pulmonary stenoses,
brachytelephalangism, neural hearing loss, and
abnormal cartilage calcifications/ossification. Birth
Defects Orig Artic Ser 1972; 8: 60-68.
5. Luo G, Ducy P, McKee MD, et al. Spontaneous
calcification of arteries and cartilage in mice lacking
matrix Gla protein. Nature 1997; 386: 78-81.
6. Jono S, Ikari Y, Vermeer C, et al. Matrix Gla protein is
associated with coronary artery calcification as assessed
by electron-beam computed tomography. Thromb
Haemost 2004; 91: 790-794.
7. Koos R, Mahnken AH, Muhlenbruch G, et al. Relation
of oral anticoagulation to cardiac valvular and coronary
calcium assessed by multislice spiral computed
tomography. Am J Cardiol 2005; 96: 747-749.
8. Becker CR, Knez A, Ohnesorge B, et al. Visualization
and quantification of coronary calcifications with
electron beam and spiral computed tomography. Eur
Radiol 2000; 10: 629-635.
9. Herzog C, Britten M, Balzer JO, et al. Multidetector-row
cardiac CT: diagnostic value of calcium scoring and CT
coronary angiography in patients with symptomatic,
but atypical, chest pain. Eur Radiol 2004; 14: 169-177.
10. Ulzheimer S, Kalender WA. Assessment of calcium
scoring performance in cardiac computed tomography.
Eur Radiol 2003; 13: 484-497.30 • March 2011 • Gulhane Med J Sağ et al.
11. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR,
Viamonte M Jr, Detrano R. Quantification of coronary
artery calcium using ultrafast computed tomography. J
Am Coll Cardiol 1990; 15: 827-832.
12. Rumberger JA, Brundage BH, Rader DJ, Kondos G.
Electron beam computed tomographic coronary
calcium scanning: a review and guidelines for use
in asymptomatic persons. Mayo Clin Proc 1999; 74:
243-252.
13. Sangiorgi G, Rumberger JA, Severson A, et al. Arterial
calcification and not lumen stenosis is highly correlated
with atherosclerotic plaque burden in humans: a
histologic study of 723 coronary artery segments using
nondecalcifying methodology. J Am Coll Cardiol 1998;
31: 126-133.
14. Stary HC. Natural history of calcium deposits in
atherosclerosis progression and regression. Z Kardiol
2000; 89 (Suppl 2): 28-35.
15. Parhami F, Tintut Y, Patel JK, Mody N, Hemmat A,
Demer LL. Regulation of vascular calcification in
atherosclerosis. Z Kardiol 2001; 90 (Suppl 3): 27-30.
16. Bostrom K, Demer LL. Regulatory mechanisms in
vascular calcification. Crit Rev Eukaryot Gene Expr
2000; 10: 151-158.
17. Doherty TM, Uzui H, Fitzpatrick LA, et al. Rationale for
the role of osteoclast-like cells in arterial calcification.
FASEB J 2002; 16: 577-582.
18. Gijsbers BL, van Haarlem LJ, Soute BA, Ebberink RH,
Vermeer C. Characterization of a Gla-containing
protein from calcified human atherosclerotic plaques.
Arteriosclerosis 1990; 10: 991-995.
19. Schurgers LJ, Dissel PE, Spronk HM, et al. Role of
vitamin K and vitamin K-dependent proteins in
vascular calcification. Z Kardiol 2001; 90 (Suppl 3):
57-63.
20. Schinke T, McKee MD, Karsenty G. Extracellular matrix
calcification: where is the action? Nat Genet 1999; 21:
150-151.
21. Wallin R, Cain D, Sane DC. Matrix Gla protein
synthesis and gamma-carboxylation in the aortic vessel
wall and proliferating vascular smooth muscle cells--a
cell system which resembles the system in bone cells.
Thromb Haemost 1999; 82: 1764-1767.
22. Shanahan CM, Proudfoot D, Farzaneh-Far A, Weissberg
PL. The role of Gla proteins in vascular calcification.
Crit Rev Eukaryot Gene Expr 1998; 8: 357-375.
23. Hauschka PV, Lian JB, Cole DE, Gundberg CM.
Osteocalcin and matrix Gla protein: vitamin
K-dependent proteins in bone. Physiol Rev 1989; 69:
990-1047.
24. Price PA. Gla-containing proteins of bone. Connect
Tissue Res 1989; 21: 51-57.
25. Price PA. Role of vitamin-K-dependent proteins in
bone metabolism. Annu Rev Nutr 1988; 8: 565-583.
26. Price PA, Williamson MK. Primary structure of bovine
matrix Gla protein, a new vitamin K-dependent bone
protein. J Biol Chem 1985; 260: 14971-14975.
27. Lian JB, Gundberg CM. Osteocalcin. Biochemical
considerations and clinical applications. Clin Orthop
Relat Res 1988; 226: 267-291.
28. Luo G, Ducy P, McKee MD, et al. Spontaneous
calcification of arteries and cartilage in mice lacking
matrix GLA protein. Nature 1997; 386: 78-81.
29. Price PA, June HH, Buckley JR, Williamson MK.
Osteoprotegerin inhibits artery calcification induced
by warfarin and by vitamin D. Arterioscler Thromb
Vasc Biol 2001; 21: 1610-1616.
30. Price PA, Faus SA, Williamson MK. Bisphosphonates
alendronate and ibandronate inhibit artery
calcification at doses comparable to those that inhibit
bone resorption. Arterioscler Thromb Vasc Biol 2001;
21: 817-824.
31. Price PA, Faus SA, Williamson MK. Warfarin-induced
artery calcification is accelerated by growth and
vitamin D. Arterioscler Thromb Vasc Biol 2000; 20:
317-327.
32. Villines TC, Hatzigeorgiou C, Feuerstein IM, O’malley
PG, Taylor AJ. Vitamin K1 intake and coronary
calcification. Coron Artery Dis 2005; 16: 199-203.
33. Schori TR, Stungis GE. Long-term warfarin treatment
may induce arterial calcification in humans: case
report. Clin Invest Med 2004; 27: 107-109.
34. Thoongsuwan N, Stern EJ. Warfarin-induced
tracheobronchial calcification. J Thorac Imaging 2003;
18: 110-112.
35. Taybi H, Capitanio MA. Tracheobronchial calcification:
an observation in three children after mitral valve
replacement and warfarin sodium therapy. Radiology
1990; 176: 728-730.
36. Bild DE, Folsom AR, Lowe LP, et al. Prevalence and
correlates of coronary calcification in black and white
young adults: the Coronary Artery Risk Development
in Young Adults (CARDIA) Study. Arterioscler Thromb
Vasc Biol 2001; 21: 852-857.
37. Pohle K, Maffert R, Ropers D, et al. Progression of
aortic valve calcification: association with coronary
atherosclerosis and cardiovascular risk factors.
Circulation 2001; 104: 1927-1932.
38. Kuller LH, Matthews KA, Sutton-Tyrrell K,
Edmundowicz D, Bunker CH. Coronary and aortic
calcification among women 8 years after menopause
and their premenopausal risk factors: the healthy
women study. Arterioscler Thromb Vasc Biol 1999; 19:
2189-2198.
39. Summers RM, Andrasko-Bourgeois J, Feuerstein
IM, et al. Evaluation of the aortic root by MRI:
insights from patients with homozygous familial
hypercholesterolemia. Circulation 1998; 98: 509-518.
40. Wang Y, Zhang W, Zhang Y, et al. VKORC1 haplotypes
are associated with arterial vascular diseases (stroke,
coronary heart disease, and aortic dissection).
Circulation 2006; 113: 1615-1621.

Thank you for copying data from http://www.arastirmax.com