Buradasınız

Bilateral Defisit’in Anaerobik Güç Üretimi Üzerindeki Etkileri: Derleme

The Effects of Bilateral Deficit on Anaerobic Power Production: Review

Journal Name:

Publication Year:

Keywords (Original Language):

Author NameUniversity of Author
Abstract (2. Language): 
During maximal voluntary muscular actions, the sum of forces exerted by homonymous muscles when activated independently (unilaterally) is typically larger than the summated force produced when the same muscles contract simultaneously (bilaterally). This phenomenon is known as “Bilateral Deficit” (BLD). Even though the actual cause of BLD has not been clearly explained, it is thought that the reason for BLD is the decreasing activation of high threshold motor units and transcallosal inhibition. The aim of this study is to explain the effects of BLD on anaerobic power production. During Sport Science literature review, following keywords were used: “Unilateral Movement (UL), Bilateral Movement (BL), Bilateral Deficit (BLD), Maximal Voluntary Contraction (MVC) and Spinal Cord Reflex”. According to finding in the literature, power produced with bilateral homonymous (simultaneously) muscular activation is 7-25 % less than during unilateral or non-homonymous muscular activation. BLD is 5-14 % in the dominant hand in bilateral hand grip contraction. BLD largely affects maximal voluntary dynamic-isometric contractions. It is thought that BLD also can be a limiting factor on maximal vertical jump performance and reaction time. Information for the effects of BLD on jumping performance, reaction time and sprinting performance is rather limited and contradictive. Bilateral muscle contractions are parts of almost any training session and they can be modified by specific training regiments or even be converted to bilateral facilitation. This may be advantageous in performances involving bilateral activation of homonymous muscles, such as in doublelegged vertical jump performance.
Abstract (Original Language): 
Maksimal istemli kas kasılması sırasında, homonymous kasların birbirinden bağımsız olarak (unilateral) aktive edilmesiyle elde edilen gücün toplam miktarı, homonymous kasların eş zamanlı olarak (bilateral) aktive edilmesiyle elde edilen güç miktarından daha fazladır. Bu olay “Bilateral Defisit (BLD)” olarak tanımlanmaktadır. BLD’nin nedeni tam olarak açıklanamamasına rağmen harekete katılan yüksek eşikli motor ünite aktivasyonundaki azalma ve transkallozal inhibasyon olduğu varsayılmaktadır. Bu çalışmanın amacı, BLD’nin anaerobik güç üretimi üzerindeki etkilerinin açıklanmasıdır. Literatür incelemesi sırasında; “Unilateral Hareket (UL), Bilateral Hareket (BL), Bilateral Defisit (BLD), İzometrik El Kavrama Kuvveti, Maksimal İstemli Kas Kasılması ve Spinal Kord Refleksleri “ anahtar kelimeleri kullanılarak basılı ve elektronik kaynaklar taranmıştır. Literatürden elde edilen bilgilere göre; belirli bir kassal hareket sırasında bilateral-homonymous (eş zamanlı olarak) kasların aktivasyonuyla üretilen güç miktarı, unilateralnonhomonymous hareketler esnasında üretilen güç miktarından % 7-25 daha azdır. Bilateral el kavrama kuvveti göz önünde bulundurulduğunda ise dominant tarafta gözlenen BLD oranı % 5-14’ tür. Maksimal istemli dinamik ve izometrik kas kasılması BLD’den büyük oranda etkilenmektedir. BLD’nin dikey sıçrama performansı, reaksiyon zamanı ve sprint performansı üzerindeki etkileri konusunda bilgiler oldukça kısıtlı ve çelişkilidir. Bilateral kas kasılması neredeyse bütün antrenman programlarında yer alır ve BLD’nin olumsuz etkileri özel antrenmanlarla değiştirilerek, bilateral fasilitasyona dönüştürülebilir. Bu durum, çift bacakla sıçrama gibi bilateral eş zamanlı kas aktivitesi içeren hareketlerde avantaj sağlayabilir.

REFERENCES

References: 

1. Arthur CG, John EH. (2006). The nervous system: A
general principles and sensory physiology. Textbook of
Medical Physiology. (11st Edition.) Philadelphia: Elsevier
Inc.
2. Bobbert MF, Graaf WW, Jonk JN, Casius LJR.
(2006). Explanation of the bilateral deficit in human
vertical squat jumping. Journal of Applied Physiology,
100, 493-499.
3. Bracic M, Supej M, Peharec S, Bacic P, Coh M. (2010).
An investigation of the influence of bilateral deficit
on the counter-movement jump performance in elite
sprinters. Kinesiology, 42, 73-81.
4. Bubanj S, Stankovic R, Bubanj R, Dimic A, Bednarik
J, Kolar E. (2010). One-leg vs two leg vertical jumping
performance. FACTA UNIVERSITATIS Series: Physical
Education and Sport, 81, 89-95.
5. Challis JH. (1998).An investigation of the influence of
bi-lateral deficit on human jumping. Human Movement
Science, 17, 307-325.
6. Coh M, Jovanovic GD, Bratic M. (2004). Motor
learning in sport. FACTA UNIVERSITATIS: Physical
Education and Sport, 2, 45-59.
7. Gazzaniga MS, Sperry RW. (1966). Simultaneous
double discrimination response following brain
bisection. Psychological Science, 4, 261-262.
8. Hanajima R, Ugawa Y, Machii K, Mochizuki H, Terao
Y, Enomoto H. ve diğ. (2001). Interhemispheric
facilitation of the hand motor area in humans. Journal
of Physiology, 531, 849-859.
9. Herbert RD, Gandevia SC. (1996). Muscle activation
in unilateral and bilateral efforts assessed by motor
nevre and cortical stimulation. Journal of Applied
Physiology, 80, 1351-1356.
10. Howard JD, Enoka RM. (1991). Maximum bilateral
contractions are modified by neurally mediated
interlimb effects. Journal of Applied Physiology, 70,
306-316.
11. Jakobi JM, Cafarelli E. (1998). Neuromuscular drive
and force production are not altered during bilateral
contractions. Journal of Applied Physiology, 84, 200-
206.
12. Jakobi JM, Chilibeck PD. (2001). Bilateral and
unilateral contractions: possible differences in
maximal voluntary force. Canadian Journal of Applied
Physiology, 26, 12-33.
13. Kawakami Y, Sale DG, MacDougall JD, Moroz JS.
(1998). Bilateral deficit in plantar flexion: relation
to knee joint position, muscle activation, and reflex
excitability. European Journal of Applied Physiology
and Occupational Physiology, 77, 212-216.
14. Khodiguian N, Cornwell A, Lares E, DiCaprio PA,
Hawkins A. (2003). Expression of the bilateral deficit
during reflexively evoked contractions. Journal of
Applied Physiology, 94, 171-178.
15. Koh TJ, Grabiner MD, Clough CA. (1993). Bilateral
deficit is larger for step than for ramp isometric
contractions. Journal of Applied Physiology, 74, 1200-
1205.
16. Li S, Danion F, Latash ML, Li ZM, Zatsiorsky MV.
(2000). Finger coordination and bilateral deficit during
two-hand Force production tasks performed by righthanded
subjects. Journal of Applied Biomechanics, 16,
379-439.
17. Oda S, Moritani T. (1994). Maximal isometric Force
and neural activity during bilateral and unilateral
elbow flexion in humans. European Journal of Applied
Physiology, 69, 240-243.
18. Oda S, Moritani T. (1995a). Movement-related cortical
potentials during handgrip contractions with special
reference to Force and electromyogram bilateral
deficit. European Journal of Applied Physiology, 72, 1-5.
19. Oda S, Moritani T. (1995b). Cross-correlation of
bilateral differences in fatique during sustained
maximal voluntary contraction. European Journal of
Applied Physiology, 70, 305-310.
20. Ohtsuki T. (1981). Decrease in grip strength induced
by simultaneous bilateral exertion with reference to
finger strength. Ergonomics, 24, 37-48.
21. Ohtsuki T. (1983). Decrease ın human voluntary
ısometric arm strenght ınduced by simultaneous
bilateral exertion. Behavioural Brain Research, 7, 165-
178.
22. Owings TM, Grabiner MD. (1998). Fatigue effects on
the bilateral deficit are speed dependent. Medicine
and Science in Sports and Exercise, 30, 1257-1262.
23. Roy MA, Sylvestre M, Katch FI, Katch VL, Lagasse
PP. (1990). Proprioceptive facilitation of muscle
tension during unilateral and bilateral knee extension.
International Journal of Sports Medicine, 11, 289-292.
24. Secher NH, RØrsgaard S, Secher O. (1978).
Contralateral influence on recruitment of curarized
muscle fibres during maximal voluntary extension of
the legs. Acta Physiologica Scandinavica, 103, 456-
462.
25. Taniguchi Y. (1998). Relationship between the
modifications of bilateral deficit in upper and lower
limbs by resistance training in humans. European
Journal of Applied Physiology, 78, 226-230.
26. Taniguchi Y, Burle B, Vidal F, Bonnet M. (2001).
Deficit in motor cortical activity for simultaneous
bimanuel responses. Experimental Brain Research, 137,
259-268.
27. Vandervoot AA, Sale DG, Moroz J. (1984). Comparison
of motor unit activation during unilateral and bilateral
leg extension. Journal of Applied Physiology, 56, 46-51.
28. Vandervoot AA, Sale DG, Moroz J. (1987). Strengthvelocity
relationship and fatiguability of unilateral
versus bilateral arm extension. European Journal of
Applied Physiology, 56, 201-205.
29. Van Soest AJ, Roebroeck ME, Bobbert MF, Huijing
PA, Van Ingen Schenau GJA. (1985). Comparison of
one-legged and two-legged countermovement jumps.
Medicine and Science in Sports and Exercise, 1 (17),
635-639.

Thank you for copying data from http://www.arastirmax.com