Buradasınız

ATLETLERDE KAS LİFİNİN ANTRENMAN GEÇMİŞİ VE CİNSİYET FARKLILIĞI İLE İLİŞKİLİ KANTİTATİF HİSTOKİMYASAL ÖZELLİKLERİ

QUANTITATIVE HISTOCHEMICAL PROPERTIES OF INDIVIDUAL MUSCLE FIBRE RELATED TO TRAINING BACKGROUND AND GENDER DIFFERENCES OF RUNNERS.

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Muscle biopsy samples were taken from the vastus lateralis muscle of 22 male and 8 female short- (SDR), middle- (MDR) and long-distance runners (LDR).Muscle crosssections were stained for the myofibrillar, ATPase, calciumstimulated myofibrillar ATPase (Ca2+-mATPase), succinate dehydrogenase (SDH) and ordinary PAS-stain. Comparative microphotometric measurements were performed for SDH and Ca2+-mATPase enzyme activities using a mic¬ rophotometer (Zeis MPM). The cross-sectional area and capillary density of fibers, which have been enzyme-histochemicaly measured, were calculated. The mean values of Ca2+-mATPase and SDH enzyme activities in single fibres were similar between histochemically similar fibre types of SDR, MDR and LDR subjects whereas the ratio between Ca2+mATPase and SDH in similar fibres showed remarkable differences among the groups. When the mean values of the ratio for single fibre types were treated with relative areas of fibre types as a marker of whole muscle (metabolic index, Ml), there was a net difference a¬ mong the three groups of athletes. In addition, it was found that female athletes had a higher SDH and lower Ca2+-mATPase: SDH ratio in type I, HA and type HA, IIB fibres, respectively, than their male counterparts. In conclusion, the results of this sutudy indicated that; 1) the ratio between Ca2+-mATPase and SDH in single fibres as a marker of ATP turnover rate is a valuable indicator to determine the metabolic properties of individual fibre related to training background of athletes, 2) the Ml value which involves the parameters of whole muscle sample can be better determinant than that of single fibre to express the metabolic properties of the muscle related to training background of athletes, 3) enlargement in fibre cross-sectional area has no significant change on the selected enzyme activities in the fibre and 4) male athletes have lower SDH and similar level Ca£+-mATPase enzyme activités whereas theyhave higher rate of Ca2+-mATPase: SDH ratio for histochemically similar fibre types compared to female counterparts, who had similar training backgrounds.
Abstract (Original Language): 
22 erkek ve 8 bayan kısa- (KMA), orta- (OMA) ve uzun mesafe koşucusunun (UMA) vastus lateralis kaslarından biyopsi alındı. Kas örneklerinin kesitleri mi-yofibriller ATPase (mATPase), kalsiyumla uyarılan miyofibriller ATPase (Ca2+-mATPase), süksinil dehidrogenaz (SDH) ve PAS boyası ile boyandı. Kas örneklerinde SDH ve Ca2+-mATPase enzim aktivasyonlarının karşılaştırmalı mik-rofotometrik ölçümleri (Zeis MPM) yapıldı. Enzimatik ölçümleri yapılan kas liflerinin kesit alanları ve kapiller yoğunlukları hesaplandı. Histokimyasal olarak belirlenen kas liflerinin Ca24-mATPase ve SDH enzim aktivasyonlarının birbirine oranı (Ca2+-mATPase: SDH) aynı kas lif tipi için KMA, OMA ve UMA denekler arasında farklılıklar gösterirken bu enzimlerin tek başına aritmetik ortalama değerleri KMA, OMA ve UMA denekler arasında farklılıklar göstermemekteydi. Kas lif tiplerinin Ca2+-mATPase: SDH oranlarının bu tiplerinin relatif alan değerleri ile düzeltilmiş ve kas örneğinin tamamı için ifade edilen değerleri (Metabolik indeks Mİ) ise üç grup arasında daha net farklılıklar göstermekteydi. Ayrıca bayan denekler tip I ve HA kas lifleri için aynı grup erkek deneklerden daha yüksek SDH, tip HA ve IIB lifleri için ise daha düşük Ca2+mATPase: SDH oranına sahipti. Sonuç olarak bu çalışmanın bulguları; 1) kas lifi ATP döngüsünün bir göstergesi olarak ifade edilen Ca2+-mATPase: SDH oranının sporcunun antrenman geçmişi ile ilişkili metabolik özelliklerini irdelemede iyi bir parmetre olduğunu, 2) bütün kas liflerinin ölçüm sonuçlarını içinde barındıran Mİ değerinin antrenman geçmişi ile ilişkili iskelet kası metabolik özelliklerini belirlemede kas lifi için ifade edilen değerlerden daha değerli olduğunu, 3) kas lifinin kesitsel alanında olabilecek değişikliklerin bu çalışmada ölçülen enzimlerin aktivasyon düzeyleri üzerinde anlamlı değişikliklere yol açmadığı ve 5) benzer tipte antrenman geçmişine sahip o¬ lan erkek deneklerin aynı kas lifi tipi için bayan deneklerden daha düşük düzeyde SDH ve benzer düzeyde Ca2+mATPase enzim aktivasyonu değerlerine karşın daha yüksek Ca2+-mATPase: SDH oranı değerlerine sahip olduklarını gösterdi.
3-27

REFERENCES

References: 

KAYNAKLAR
1- Andersen P. (1975). Capillary density in skeletal muscle of man. Acta Physiol Scand 95: 203-205.
2- Andersen P and Henriksson J. (1977). Training induced changes in the subgroups of human type II skeletal muscle fibres. Acta Physiol Scand 99: 123-125.
3- Barany M. (1967). ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 50: 197-216.
4- Boobis LH, Williams C and Wotton SA. (1982). Human muscle metabolism during brief maximal exercise. J Physiol 338: 21-22.
5- Brodal P, Ingjer F and Hermansen L. (1977). Capillary supply of skeletal muscle fibres in untrained and endurance trained men. Am J Physiol 232 (Heart Circ Physiol): H 705-H 712.
6- Brookes SV, Faulkner JA and McCubbrey DA. (1990). Power outputs of slow and fast skeletal muscles of mice. J Appl Physiol 68: 1282-1285.
7- Burke RE (1981). Motor units: anatomy, physiology, and functional organization. In: Handbook of Physiology. The Nervous System. Motor Control, vol. II, section 1, part 1, ed. Brooks V.B., pp. 345-422. American Physiological Society, Bethesde, MD, USA.
8- Cadefau J, Casademont J, Grau JM, Fernandez J, Balaguer A, Vernet M, Cusso Ft and Urbano-Marquez A. (1990). Biochemical and histochemical adaptation to sprint training in young athletes. Acta Physiol Scand 140: 341-351.
9- Chalmers GR, Roy RR and Edgerton VR. (1992). Variation and limitations in fibre enzymatic and size responses in hypertrophied muscle. J Appl Physiol 73: 2: 631-641.
10- Close Rl. (1972). Dynamic properties of mamalian skeletal muscles. Physiol Rev. 52: 129-197.
11- Costill DL, Daniels J, Evans W, Fink W, Krahenbuhl G and Saltin B. (1976). Skeletal muscle enzymes and fiber composition in male and female track athletes. J Appl Physiol 40 (2): 149-154.
12- Costill DL, Fink WJ and Pollock ML. (1976). Muscle fiber composition and enzyme activities of elite distance runners. Med Sci Sports Exerc 8 (2): 96-100.
13- Crow MTA and Kushmerick MJ. (1982). Chemical energetics of slow and fast-twitch muscle of the mouse. J Gen Physiol 79: 147-166.
14- Degens H, Veerkamp JH, van Moerkerk HTB, Tuker Z, Hoofd LJC and Binkhorst RA (1993). Metabolic capaicity, fibre type area and ca-
24
Spor Bilimleri Dergisi
pillarization of rat plantaris muscle. Effects of age, overload and training and relationship with fatigue resistance. Int J Biochem In press.
15- Edstrom L and Larsson L. (1987). Effects of age on contractile and enz-yme-histochemical properties of fast-and slow-twitch single motor units in the rat. J Physiol Lond 392: 129-145.
16- Epstein HF and Fischman DA. (1991). Molecular analysis of protein assembly in muscle development. Science Wash DC 251: 1039-1044.
17- Essen B. (1978). Glycogen depletion of different fibre types in human skeletal muscle during intermittent and continuous exercise. Acta Physiol Scand 103:446-455.
18- Essen B, Jansson E, Henriksson J, Taylor AW and Saltin B. (1975). Metabolic characteristics of fibre types in human skeletal muscle. Acta Physiol Scand 95: 153-165.
19- Faulkner JA, Claflin DR and McCully KK. (1986). Power output of fast and slow fibres from human skeletal muscle. In: Human Power Output, ed. NL Jones, N McCartney and AJ McComas, pp. 81-89. Human Kinetics Publishers, Champaign, IL- USA.
20- Goldspink G and Waterson SE. (1971). The effect of growth and inanition on the total amount of nitroblue tetrazolium deposited in individual muscle fibres of fast and slow rat muscle. Acta Histochem 40: 16-22.
21- Gollnick PD, Armstrong RB, Saltin B, Saubert CW IV, Sembrowich WL and Shepherd RE. (1973). Effect of training on enzyme activity and fiber composition in skeletal muscle. J Appl Physiol 34: 107-111.
22- Gollnick PD, Armstrong RB, Saubert CW IV, Piehl K and Saltin B. (1972). Enzyme activity and fiber composition in skeletal muscle of untrained and trained muscle. J Appl Physiol 33: 312-319.
23- Gur H and Larsson L. (1991). Regional differences in the influence of the interval between removal and freezing of muscle samples on muscle fibre size. Acta Physiol Scand 143: 445-446.
24- Howald H, Hoppeler H, Claassen H, MatieuO and Straub R. (1985). Influences of endurance training on the ultrastructural composition of the different muscle fibre types in humans Plugers Arch 403: 369-376.
25- Hultman E, Bergstrom M, Spriet LL and Soderlund K. (1990). Energy metabolism and fatigue. In: A. Taylor, P. Gollnick, H. Green, C. Lunuzzo, E. Noble, G. Metivier and J. Sutton (eds), Biochemistry of Exercise VII, pp. 73-92. Human Kinetic Publications Champaign.
26- lanuzzo DC and Chen V. (1979). Metabolic character of hypertrophied rat muscle. J Appl Physiol 46: 738-742.
25
Spor Bilimleri Dergisi
27- Ingjer F. (1979). Effects of endurance training on muscle fibre ATPase activity, capillary supply and mitochondrial content in man. J Physiol 294: 419-432.
28- Jansson E, Dudley GA, Norman B and Tech PA. (1987). ATP and IMP in single human muscle fibres after high intensity exercise. Clin Physiol 7: 337-345.
29- Katz A, Sahlin K and Henriksson J. (1986). Muscle ATP turnover rate during isometric contractions in humans. J Appl Physiol 60: 1839-1842.
30- Kernell D, Donselaar Y and Eerbeek O. (1987). Effects of physiological a¬mounts of high and low-rate chronic stimulation on fast-twitch muscle of the cat hindlimb. Endurance related properties. J Neurophysiol 58: 614¬627.
31- Komi PV and Karlsson J. (1987). Skeletal muscle fibre types, enzyme activities and physical performance in young males and females. Acta Scand Physiol 103: 210-218.
32- Kugelberg E and Lindegren B. (1979). Transmission and contraction fatigue of rat motor units in relation to succinate dehydrogenase activity of motor unit fibres. J Physiol Lond 288: 285-300.
33- Kuno S, Inaki M, Akima H, Takahashi H, Okumoto T, Fukunaga T and Kat¬suta S. (1994). Increase of muscle oxidative capcity after sprint-training in human (Abstract) Med Sci Sports Exerc (Suppl) 25:5: p549.
34- Larsson L, Ansved T, Edstrom L, Gorza L and Schiaffino S. (1991). Effects of age on physiological, immunohistochemical and biochemi acal properties of fast-twitch single motor units in the rat. J Physiol (Lond.) 443: 257-275.
35- Nachlas MM, Tsou KG, De Sousa E, Cheng CS and Seligman AM. (1957). Cytochemical demonstration of succinic dehydrogenase by the use of a new p-nitrophenyl substituted dietrazole. J Histochem Cytochem 5: 420¬436.
36- Riedy M, Moore RL and Gollnick PD. (1985). Adaptive response of hypert-rophied skeletal muscle to endurance training. J Appl Physiol 59: 127-134.
37- Romanual FCA. (1965). Capillary supply and metabolism of muscle fibres. Archives of Neurology 12: 497-509.
38- Saltin B, Henriksson J, Nygaard E and Andersen P. (19677). Fibre types and metabolic potentials of skeletal muscles in sedentary men and endurance runners. Ann NY Acad Sci 310: 3-29.
39- Saubert IV CW, Arnstrong RB, Shepherd RE and Gollnick PD. (1973). A¬naerobic enzyme adaptations to sprint training in rats. Pflugers Arcn 341:
Spor Bilimleri Dergisi
305-312.
40- Schantz P. (1986). Plasticty of human skeletal muscle. Acta Phyiol Scand (Suppl. 558) 128: 1-62.
41- Sóderlund K, Greenhaff PL and Hultman E. (1992). Energy metabolism in type I and type II human muscle fibers during short term electrical stimulation at different frequencies. Acta Physiol Scand 144: 15-22.
42- Staudte HW, Exner GU and Pette D. (1973). Effects of short term high intensity (sprint) training on some contractile and metabolic characteristics of fast and slow muscle of the rat. Pflügers Arch 344: 159-168.
43- Tarnopolsky LJ, MacDougall JD, Atkinson SA, Tarnopolsky MA and Sutton JR. (1990). Gender differences in substrate for endurance exercise. J Appl Physiol 68: 302-308.
44- Tech P and Karlsson J. (1985). Muscle fiber types and size in trained and untrained muscles of elite athletes. J Appl Physiol 59: 1716-1720.
45- Tech PA, Thorstensson A and Fujitsuka N. (1989). Creatine phosphate in fiber types of skeletal muscle before and after exhaustive exercise. J Appl Physiol 66: 1756-1759.
46- Thorstensson A, Larsson L, Tech P and Karlsson J. (1977). Muscle strength and fiber composition in athletes and sedentary men. Med Sci Sports 9 (1): 26-30.
47- Thorstensson A, Sjódin B and Karlsson J. (1975). Enzyme activities and muscle strength after "sprint training" in man. Acta Physiol Scand 94: 311-318.
48- Van Der Laarse WJ, Diegenbach PC and Maslam S. (1984) Quantitative histochemistry of three mouse hind-limb muscles: the relationship between calcium-stimulate myofibrillar ATPase and succinate dehydrogenase activities. Histochem J 16: 529-541.
49- Van Der Laarse WJ, Diegenbach PC and Maslam S. (1986). Relationship between myofibrillar ATPase and ATP concentration: A quantitative his-tochemical study on mouse fast and slow skeletal muscle fibres. In: Estimation of contractile properties of mouse skeletal muscle fibres. Doctoral Thesis, Amesterdam University, pp. 51-58, Amsterdam.

Thank you for copying data from http://www.arastirmax.com