Buradasınız

PARALEL MEKANİZMALARIN KİNEMATİĞİ, DİNAMİĞİ VE ÇALIŞMA UZAYI

Journal Name:

Publication Year:

Abstract (2. Language): 
This paper summarizes the current state of affairs in the area of paralel mechanisms, their overall properties, kinematics, dynamics and workspace analysis; and makes suggestions on possible research areas that have not been explored yet. Piloting trainees train on flight simulators before flying the actual aircraft, so that training time and losses are minimized. It is vital for piloting trainees to sense the translation and rotation motions of the simulator just as they would in a real aircraft. The motion that a pilot would be exposed to while flying a real aircraft is provided by a paralel mechanism placed under the simulator. A slightly modified version of the 6 degree of freedom paralel platform mechanism suggested by Stewart in 1965 is used for this purpose. Due to their architecture, paralel mechanisms have higher natural frequencies, stiffness, speed, nominal loading capacity and precision, when compared to serial mechanisms, whereas their workspaces are smaller than those of serial mechanisms. The Stewart Platform Mechanism (SPM), is comprised of a hexagon shaped fixed base platform and a movable platform linked via six legs whose lengths can be changed using prismatic joints. The legs can be attached to the platforms using revolute or spherical joints, though universal joints are often used. The actuators that change leg lengths are on the base. SPM can move in three translational and three rotational directions.
Abstract (Original Language): 
Bu çalışmada, paralel mekanizmaların genel özellikleri, kinematik, dinamik ve çalışma uzayları hakkında bugüne kadar yapılan çalışmaların bir özeti verilerek ileriye yönelik önerilerde bulunulmuştur. Havacılık sahasında, pilot adayları, uçakla uçuş eğitimine başlamadan önce simülatörlerde eğitim görmektedirler, böylece eğitim kayıpları ve zamanı en aza indirilmektedir. Simülatörlerdeki eğitimler esnasında, pilot adaylarının ötelenme ve dönme hareketlerini gerçeğe yakın hassasiyette algılamaları çok önemlidir. Gerçek bir uçakta uçarken pilotun maruz kalacağı hareket, simülatörün altında bulunan bir paralel mekanizma ile sağlanır. 1965’te Stewart’ın uçuş simülatörü olarak önerdiği 6 serbestlik dereceli paralel platform mekanizmasının modifiye edilmiş hali bu işte kullanılmaktadır. Paralel mekanizmalar, mimarilerinden dolayı, seri mekanizmalardan daha yüksek doğal frekansa, katılığa, çalışma hızına, nominal yüklemeye ve hassasiyete sahiptir, ancak çalışma uzayları daha küçüktür. Stewart platform mekanizması, SPM, boyları prizmatik eklemler vasıtasıyla değişebilen 6 bacak ile birbirine bağlı altıgen biçimli bir sabit platform ve bir hareketli platformdan oluşmaktadır. Bacaklar platformlara genelde üniversal mafsallarla bağlı olmakla beraber, dönel veya küresel mafsallar da kullanılabilir. Bacakları hareket ettiren eyleyiciler sabit tabandadır. SPM üç yönde öteleme ve üç yönde dönme yapabilmektedir.
19
36

REFERENCES

References: 

[1] D. Stewart, “A Platform with Six Degrees of
Freedom”, Proc. Instn. Mech. Engrs, 180(15),
371-386,1965.
[2] D. Ku, “Direct Displacement Analysis of a
Stewart Platform Mechanism”, Mechanism and
Machine Theory, 34(3), 453-465, 1999.
[3] J. P. Merlet, “Direct Kinematics of Parallel
Manipulators”, IEEE Transactions on Robotics
and Automation, 9(6), 842-846 (1993).
[4] Y. K. Yiu, H. Cheng, Z. H. Xiong, G.F.Liu ve
Z.X.Li, “On the Dynamics of Parallel
Manipulators”, Proceedings of the 2001 IEEE
International Conference on Robotics and
Automation, 2001.
[5] K. Liu, J. M. Fitzgerald ve F. L. Lewis,
“Kinematic Analysis of a Stewart Platform
Manipulator, ”IEEE Transactions on Industrial
Electronics, 40(2), 282-293, 1993.
[6] K. Lee ve D.K. Shah, “Kinematic Analysis of a
Three-Degrees-of-Freedom In-Parallel
Actuated Manipulator”, IEEE Journal of
Robotics and Automation, 4(3), 354-360, 1988.
[7] X. Shi ve R.G. Fenton, “Solution to the
Forward Instantaneous Kinematics for a
General 6-dof Stewart Platform”, Mechanism
and Machine Theory, 27(3), 251-259, 1992.
[8] C. Innocenti ve V. Parenti-Castelli, “Direct
Position Analysis of the Stewart Platform
Mechanism”, Mechanism and Machine Theory,
25(6), 611-621, 1990.
[9] B. Dasgupta ve T.S. Mruthyunjaya, Mechanism
and Machine Theory, 35, 15-40, 2000.
[10] L. Romdhane, “Design and Analysis of a
Hybrid Serial-Parallel Manipulator”,
Mechanism and Machine Theory, 34, 1037-
1055, 1999.
[11] T. Arai, K. Yuasa, Y. Mae, K. Inoue, K.
Miyawaki ve N.Koyachi, “A Hybrid Drive
Parallel Arm for Heavy Material Handling”,
IEEE Robotics and Automation Magazine, 45-
54, 2002.
[12] R. S. Stoughton, T. Arai, “A Modified
Stewart Platform Manipulator with Improved
Dexterity”, IEEE Transactions on Robotics
and Automation, 9(2), 166-173, 1993.
[13] P. Nanua, K.J. Waldron, V. Murthy, “Direct
Kinematic Solution of a Stewart Platform”,
IEEE Transactions on Robotics and
Automation, 6(4), 438-444, 1990.
[14] K. Wohlhart, “Displacement Analysis of the
General Spherical Stewart Platform”,
Mechanism and Machine Theory, 29(4), 581-
589, 1994.
[15] B. Dasgupta ve T.S. Mruthyunjaya, “A
Canonical Formulation of the Direct Position
Kinematics Problem for a General 6-6 Stewart
Platform”, Mechanism and Machine Theory,
29(6), 819-827, 1994.
[16] B. Dasgupta ve T.S. Mruthyunjaya, “A
Constructive Predictor-Corrector Algorithm for
the Direct Position Kinematics Problem for a
General 6-6 Stewart Platform”, Mechanism and
Machine Theory, 31(6), 799-811, 1996.
[17] X. Zhao ve S. Peng, “Direct Displacement
Analysis of Parallel Manipulators”, Journal of
Robotic Systems, 17(6), 341-345, 2000.
[18] D. Jakobovic ve L. Jelenkovic, “The Forward
and Inverse Kinematics Problems for Stewart
Parallel Mechanisms”, International Scientific
Conference on Production Engineering, II-001
- II-012, 2002.
Paralel Mekanizmaların Kinematiği, Dinamiği ve Çalışma Uzayı
ANLI, ALP, YURT, ÖZKOL
34
[19] M. S. Tsai, T. N. Shiau, Y. J. Tsai ve T. H.
Chang, “Direct Kinematic Analysis of a 3-PRS
Parallel Mechanism”, Mechanism and Machine
Theory, 38, 71-83, 2003.
[20] J. Kim ve F. C. Park, “Direct Kinematic
Analysis of 3-RS Parallel Mechanisms”,
Mechanism and Machine Theory, 36, 1121-
1134, 2001.
[21] R. Di Gregorio, “Kinematics of a New
Spherical Parallel Manipulator with Three
Equal Legs: The 3-URC Wrist”, Journal of
Robotic Systems, 18(5), 213-219, 2001.
[22] M. Callegari ve M. Tarantini, “Kinematic
Analysis of a Novel Translational Platform”,
Transactions of the ASME, 125, 308-315,
2003.
[23] R. Di Gregorio, “Translational Parallel
Manipulators: New Proposals”, Journal of
Robotic Systems, 19(12), 595-603, 2002.
[24] Dasgupta, B. and Mruthyunjaya T.S., “Closed-
Form Dynamic Equations of the General
Stewart Platform Through the Newton-Euler
Approach”, Mechanism and Machine Theory,
Vol.33, 1998, 993-1012.
[25] Dasgupta, B. and Mruthyunjaya T.S., “Newton-
Euler Formulation for the Inverse Dynamics of
the Stewart Platform Manipulator”, Mechanism
and Machine Theory, Vol.33, 1998, 1135-1152.
[26] J. Wang ve C. M. Gosselin, “A New Approach
for the Dynamic Analysis of Parallel
Manipulators”, Multibody System Dynamics,
2, 317-334, 1998.
[27] G. Lebret, K. Liu ve F. L. Lewis, “Dynamic
Analysis and Control of a Stewart Platform
Manipulator”, Journal of Robotic Systems,
10(5), 629-655, 1993.
[28] H. Pang ve M. Shahinpoor, “Inverse Dynamics
of a Parallel Manipulator”, Journal of Robotic
Systems, 11(8), 693-702, 1994.
[29] M. J. Liu, C. X. Li, C. N. Li, “Dynamics
Analysis of the Gough-Stewart Platform
Manipulator”, IEEE Transactions on Robotics
and Automation, 16(1), 2000.
[30] R. Di Gregorio, Journal of Robotic Systems
19(1), 37–43, 2002.
[31] F. Pernkopf ve M. Husty, “Workspace Analysis
of Stewart-Gough Manipulators Using
Orientation Plots”, Proceedings of MUSME
2002, the International Symposium on
Multibody Systems and Mechatronics, 2002.
[32] El- M Dafaoui, Y. Amirat, J. Pontnau, C.
François, IEEE Transactions on Robotics and
Automation, 14(1), 1998.
[33] J.A. Carretero, M.Nahon, R.P.Podhoreski, Pr.
of the 1998 IEEE/RSI International Conference
on Intelligent Robots and Systems, 1998.
[34] S. A. Joshi ve L. W. Tsai, “Jacobian Analysis
of Limited-Dof Parallel Manipulators”,
Transactions of the ASME, 124, 254-258,
2002.
[35] C. Gosselin, J. Angeles, IEEE Transactions on
Robotics and Automation, 6(3), 281-290, 1990.
[36] F. Pernkopf ve M. L. Husty, “Singularity
Analysis of Spatial Stewart-Gough Platforms
with Planar Base and Platform”, Proceedings
of DETC’02 2002 ASME Design Engineering
Technical Conference, 1-8, 2002.
[37] C. L. Collins ve J. M. McCarthy, IEEE, 473-
478, 1997.
[38] J. Angeles, G. Yang ve I. M. Chen,
IEEE/ASME Transactions on Mechatronics,
8(4), 469-475, 2003.
[39] D. Kim ve W. Chung, “Analytic Singularity
Equation and Analysis of Six-Dof Parallel
Manipulators Using Local Structurization
Method”, IEEE Transactions on Robotics and
Automation, 15(4), 1999.
[40] J. Bessala, P. Bidaud, F. Ben Ouezdou,
Proceedings of the 1996 IEEE International
Conference on Robotics and Automation, 1996.
[41] L. Romdhane, Z. Affi ve M. Fayet, Journal f
Mechanical Design, 124, 419-426, 2002.
[42] D. Zlatanov, R. G. Fenton ve B. Benhabib,
“Singularity Analysis of Mechanisms and
Robots via A Motion-Space Model of the
Instantaneous Kinematics”, IEEE, 980-985,
1994.
[43] D. Zlatanov, R. G. Fenton ve B. Benhabib,
“Singularity Analysis of Mechanisms and
Robots via A Velocity-Equation Model of the
Instantaneous Kinematics”, IEEE, 986-991,
1994.
[44] Z. Huang, L. H. Chen ve Y. W. Li, Journal of
Robotic Systems, 20(4), 163-176, 2003.
[45] L. J. Du Plessis, J. A. Snyman, International
Journal for Numerical Methods in Engineering,
52, 345-369, 2001.
[46] R. Di Gregorio, V. Parenti-Castelli, Journal of
Mechanical Design, 124, 259-264, 2002.
[47] G. Yang, I. M. Chen, W. Lin ve J. Angeles,
“Singularity Analysis of Three-Legged Parallel
Robots Based on Passive-Joint Velocities”,
IEEE Transactions on Robotics and
Automation, 17(4), 413-422, 2001.
[48] X. J. Liu, J. Kim ve K. K. Oh, “Singularity
Analysis of the HALF Manipulator with
Revolute Actuators”, Proceedings of the 2003
IEEE International Conference on Robotics and
Automation, 767-772, 2003.
[49] G. Liu, Y. Lou, Z. Li, IEEE Transactions on
Robotics and Automation, 19(4), 579-594,
2003.
[50] D. L. Kim, W. K. Chung ve Y. Youm,
“Geometrical Approach for the Workspace of
6-Dof parallel Manipulators”, Proceedings of
the 1997 IEEE International Conference on
Robotics and Automation, 1997.
[51] J. T. Wen, J. F. O’Brien, “Singularities in
Three-Legged Platform-Type Parallel
Paralel Mekanizmaların Kinematiği, Dinamiği ve Çalışma Uzayı
ANLI, ALP, YURT, ÖZKOL
35
Mechanisms”, IEEE Transactions on Robotics
and Automation, 19(4), 720-726, 2003.
[52] A. Wolf ve M. Shoham, “Investigation of
Parallel Manipulators Using Linear Complex
Approximation”, Transactions of the ASME,
125, 564-572, 2003.
[53] W. Dang ve T. Min, Proceedings of the 2001
IEEE International Conference on Robotics and
Automation, 2001.
[54] Z. Wang, Z. Wang, W. Liu ve Y. Lei, “A
Study on Workspace, Boundary Workspace
Analysis and Workpiece Positioning for
Parallel Machine Tools”, Mechanism and
Machine Theory, 36, 605-622, 2001.
[55] J. Angeles, G. Yang, I. M. Chen, 2001
IEEE/ASME International Conference on
Advanced Intelligent Mechatronics
Proceedings, 2001.
[56] M. Z. A. Majid, Z. Huang ve Y. L.
Yao,”Workspace Analysis of a Six-Degrees of
Freedom, Three-Prismatic-Prismatic-Spheric-
Revolute Parallel Manipulator”, International
Journal of Advanced Manufacturing
Technology, 16, 441-449, 2000.
[57] J. P. Merlet, “Determination of the Orientation
Workspace of Parallel Manipulators”, Journal
of Intelligent and Robotic Systems, 13,143-160,
1995.
[58] M. Badescu ve C. Mavroidis, “Workspace
Optimization of 3-Legged UPU and UPS
Parallel Platforms with Joint Constraints”,
Journal of Mechanical Design, 126, 291-300,
2004.
[59] M. Badescu, J. Morman ve C.Mavroidis,
Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, 3678-
3683, 2002.
[60] I. A. Bonev, J. Ryu, Mechanism and Machine
Theory, 36, 2001.
[61] Y. Li, Z. Huang ve L. Chen, “Singular Loci
Analysis of 3/6-Stewart Manipulator by
Singularity-Equivalent Mechanism”, IEEE,
1881-1886, 2003.
[62] J. P. Merlet, Proceedings of the 1996 IEEE
International Conference on Robotics and
Automation, 3726-3731, 1996.
[63] B. Monsarrat, C. M. Gosselin, IEEE
Transactions on Robotics and Automation,
19(6), 954-966, 2003.
[64] Y. Jin, I. M. Chen ve G. Yang, “Structure
Synthesis and Singularity Analysis of a Parallel
Manipulator Based on Selective Actuation”, Pr.
of the 2004 IEEE International Conference on
Robotics and Automation, 4533-4538, 2004.
[65] S.H.Lee,J.B.Song,W.C.Choi ve D.Hong,
Proceedings of the 2002 IEEE International
Conference on Robotics and Automation, 3666-
3671, 2002.
[66] I. M. Chen, J.Angeles, Theingi ve C.Li.Oh,
“The Management of Parallel-Manipulator
Singularities Using Joint Coupling”,
Proceedings of the 2003 IEEE International
Conference on Robotics and Automation, 773-
778, 2003.
[67] T.Arai,K.Takayama,K.Inoue,Y.Mae,Y.Koseki,
Pr. of the 2000 IEEE/RSJ, International
Conference on Intelligent Robots and Systems,
2000.
[68] K. Miller, “Maximization of Workspace
Volume of 3-Dof Spatial Parallel
Manipulators”, Journal of Mechanical Design,
124, 347-350, 2002.
[69] A. M. Hay ve J.A. Snyman, “Methodologies for
the Optimal Design of Parallel Manipulators”,
International Journal for Numerical Methods in
Engineering, 59, 131-152, 2004.
[70] J. Cortes ve T. Simeon, “Probabilistic Motion
Planning for Parallel Mechanisms”, Pr. of the
2003 IEEE International Conference on
Robotics and Automation, 4354-4359, 2003.
[71] J. P. Merlet, IEEE, 2166-2171, 1994.
[72] A. K.Dash, I.M.Chen, S.H.Yeo ve G.Yang,
“Singularity-Free Path Planning of Parallel
Manipulators Using Clustering Algorithm and
Line Geometry”, Proceedings of the 2003 IEEE
International Conference on Robotics and
Automation, 761-766, 2003.
[73] R. Toogood, H. Hao ve C. Wong, “Robot Path
Planning Using Genetic Algorithms”, IEEE,
489-494, 1995.
[74] Y. X. Su, B. Y. Duan, B. Peng ve R. D.
Nan, “Singularity Analysis of Fine-Tuning
Stewart Platform for Large Radio Telescope
Using Genetic Algorithm”, Mechatronics,13,
413-425, 2003.
[75] Y. X. Su, B. Y. Duan ve C. H. Zheng,
“Genetic Design of Kinematically Optimal Fine
Tuning Stewart Platform for Large Spherical
Radio Telescope”, Mechatronics, 11, 821-835,
2001.
[76] Y. X. Su, C. H. Zheng ve B. Y. Duan,
“Singularity Analysis of a 6-Dof Stewart
Platform Using Genetic Algorithm”, IEEE,
2002.
[77] C. Yee ve K. Lim, “Forward Kinematics
Solution of Stewart Platform Using Neural
Networks”, Neurocomputing, 16, 333-349,
1997.
[78] M. Durali ve E. Shameli, “Full Order Neural
Velocity and Acceleration Observer for a
General 6-6 Stewart Platform”, Proceedings of
the 2004 IEEE International Conference on
Networking, Sensing and Control, 333-338,
2004.
[79] S.V. Sreenivasan, K.J. Waldron, P. Nanua,
“Closed-Form Direct Displacement Analysis of
a 6-6 Stewart Platform”, Mechanism and
Machine Theory, 29(6), 855-864, 1994.
[80] J. A. Carretero, R. P. Podhorodeski, M. A.
Nahon ve C. M. Gosselin, “Kinematic Analysis
Paralel Mekanizmaların Kinematiği, Dinamiği ve Çalışma Uzayı
ANLI, ALP, YURT, ÖZKOL
36
and Optimization of a New Three Degree-of-
Freedom Spatial Parallel Manipulator”, Journal
of Mechanical Design, 122, 17-24, 2000.
[81] P. Martin, J. R. Millan, Robotics and
Autonomous Systems, 31, 227-246, 2000.
[82] S. N. Yurt, 6-3 Stewart Platform
Mekanizmasının Kinematik, Dinamik Analizi
ve Kontrolu, Doktora Tezi, 2002.

Thank you for copying data from http://www.arastirmax.com