Buradasınız

ALÜMİNYUM LEVHALARIN YÜKSEK HIZLI ÇARPMA DAVRANIŞLARI İÇİN AMPİRİK BİR MODEL

AN EMPIRICAL MODEL FOR HIGH VELOCITY IMPACT BEHAVIOR OF ALUMİNUM PLATES

Journal Name:

Publication Year:

Abstract (2. Language): 
Due to their low density, high structural strength and energy absorption capacity, aluminum alloys are frequently used in lightweight armor systems such as aeronautics applications, offshore platforms, ship components, bridge decks, etc. This wide application area considering behavior of materials subjected to high velocity impact load increases the importance of the investigations about developing analytical solutions to determine the failure mechanisms and penetration depth caused by high velocity impact. In this study, an exponential equation was proposed that can be used to determine the penetration depth of the 2024 aluminum alloys of T351 condition. Comparing the analytical results with the results of previous experimental study which used the 9 mm Parabellum bullets, it was determined that equation proposed efficiently model the penetration depth of the AA 2024 T351 plates under impact load at velocity level in experiments.
Abstract (Original Language): 
Alüminyum alaşımı levhalar düşük yoğunluk, yüksek yapısal mukavemet ve enerji emiş kapasitesi özellikleri nedeniyle uçak yapıları, gemi, bina ve köprü gibi çok çeşitli uygulamaların yanında hafif korunma sistemlerinde de sıklıkla kullanılmaktadır. Yüksek hızlı çarpma yükleri altındaki malzeme davranışı konusundaki bu geniş uygulama alanı, çarpma sonrasında oluşacak hasarın ve delinme miktarının belirlenmesi konusunda geliştirilecek analitik modellerin önemini artırmaktadır. Bu çalışmada, 4.80 mm ve 6.35 mm kalınlığında hazırlanan T351 ısıl durumundaki 2024 alaşımı alüminyum levhaların delinme miktarlarının belirlenmesinde kullanılabilecek üstel bir ifade önerilmiştir. Sonuçlar, önceki çalışmalarda 9 mm çapında MKEK yapımı Parabellum mermiler kullanılarak elde edilen deneysel çalışma sonuçları ile karşılaştırılmış, önerilen ifadenin AA 2024 T351 alaşımı levhaların yüksek hızlı çarpma yüklemesi durumundaki delinme miktarını, deneylerde belirtilen hızlar civarında güçlü bir şekilde temsil edebileceği belirlenmiştir.
59
65

REFERENCES

References: 

[1] Børvik, T., Clausen, A.H., Eriksson, M.,
Berstad, T., Hopperstad, O.S. and Langseth, M.,
“Experimental and numerical study on the
perforation of AA6005-T6 panels” (2005) Int.
Journal of Impact Engineering, Vol.32, pp. 35-64,.
[2] Roisman, I.V., Yarin, A.L. and Rubin, M.B.,
(1997) “Oblique penetration of a rigid projectile
into an elastic-plastic target” Int. Journal of Impact
Engineering, Vol.19, pp. 769-795.
[3] Yossifon, G., Rubin, M.B. and Yarin, A.L.,
(2001) “Penetration of a rigid projectile into a finite
thickness elastic-plastic target − comparison
between theory and numerical computations” Int.
Journal of Impact Engineering, Vol. 25, pp. 265-
290.
[4] Yossifon, G., Yarin, A.L. and Rubin, M.B.,
(2002) “Penetration of a rigid projectile into a
multi-layered target: theory and numerical
computations” Int. Journal of Engineering Science,
40, 1381-1401.
[5] Chen, X.W. and Li, Q.M., (2003)
“Perforation of a thick plate by rigid projectiles”
Int. Journal of Impact Engineering, Vol. 28, pp.
743-759.
[6] Li, Q.M., Weng, H.J. and Chen, X.W.,8
2009) “A modified model for the penetration into
moderately thick plates by a rigid, sharp-nosed
projectile” Int. Journal of Impact Engineering, Vol.
30, pp. 193-204.
[7] Wijk, G., Hartmann, M. and Tyrberg, A.,
(2005) “A model for rigid projectile penetration and
perforation of hard steel and metallic target”
Swedish Defense Research Agency, FOI-R-1617-
SE.
[8] Liu, D. and Strong, W.J., (2000) “Ballistic
limit of metal plates struck by blunt deformable
missiles: experiments” Int. Journal of Solids and
Structures, Vol. 37, pp. 1403-1423.
[9] Roisman, I.V., Yarin, A.L. and Rubin, M.B.,
(2001) “Normal penetration of an eroding projectile
into an elastic-plastic target” Int. Journal of Impact
Engineering, 25, 573-597.
[10] Rubin, M.B. and Yarin, A.L., (2002) “A
generalized formula for penetration depth of a
deformable projectile” Int. Journal of Impact
Engineering, Vol. 27, pp.387-398.
[11] Gee, D.J., (2003) “Plate perforation by
eroding rod projectiles” Int. Journal of Impact
Engineering, Vol. 28, pp. 377-390.
[12] Billon, H., (1998) “A Model for Ballistic
Impact on Soft Armor” DSTO Aeronautical and
Maritime Research Laboratory, Melbourne.
[13] Børvik, T., Langseth, M., Hopperstad, O.S.
and Malo, K.A., (1999) “Ballistic penetration of
steel plates” Int. Journal of Impact Engineering,
Vol. 22, pp. 855-886.
[14] Sciuva, M., Frola, C. and Salvano, S., (2003)
“Low and high velocity impact on Inconel 718
casting plates: ballistic limit and numerical
correlation” Int. Journal of Impact Engineering,
Vol. 28, pp. 849-876.
[15] Lopez-Puente, J., Arias, A., Zaera, R. and
Navarro, C., (2005) “The effect of the thickness of
the adhesive layer on the ballistic limit of
ceramic/metal armours. An experimental and
numerical study” Int. Journal of Impact
Engineering, Vol. 32, pp. 321-336.
[16] Zukas, J.A., (1990) High Velocity Impact
Dynamics, John Wiley&Sons Inc., Chichester.
[17] Nemat-Nasser, S., Kang, W.J., McGee, J.D.,
Guo, W-G. and Isacs, J.B., (2007) “Experimental
investigation of energy-absorption characteristics of
components of sandwich structures” Int. Journal of
Impact Engineering, Vol. 34, pp. 1119-1146.
[18] Özşahin, E. ve Tolun, S., (2008) “AA 2024
T351 levhaların balistik davranışlarının deneysel ve
Alüminyum Levhaların Yüksek Hızlı Çarpma Davranışları için Ampirik Bir Model
ÖZŞAHİN, TOLUN
65
sayısal olarak incelenmesi” VII. Havacılık
Sempozyumu, Kayseri, 15-16 Mayıs, Kayseri.
[19] Chapra, S.C. ve Canale, P.C., (2003)
“Mühendisler İçin Sayısal Yöntemler” Literatür
Yayıncılık, İstanbul. (çev:Heperkan, H. ve Kesgin,
U.)
[20] Devare, J.L, (1995) “Probability and
Statistics for Engineering and the Sciences”,
Duxbury Press, Pasific Grove.

Thank you for copying data from http://www.arastirmax.com