Buradasınız

BULANIK VERİTABANI VE BULANIK SORGULAR KULLANILARAK, İNSAN KAYNAKLARI ADAY SEÇME SİSTEMİ MODELİNİN OLUŞTURULMASI VE UYGULANMASI

CREATING AND APPLYING A MODEL FOR HUMAN RESOURCES CANDIDATE SELECTION SYSTEM BY USING A FUZZY DATABASE AND FUZZY QUERIES

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
Retreieving the desired data accurately and quickly is as important as keeping it in an orderly manner. In database systems, data can be accessed by crisp queries. However, by nature, the user does not always use crisp queries. This leads to retrieval of redundant data for the queries. In nature, not everything is built upon exact values and thus needs flexibility. The subjective change of the data from one individual to another makes the query process harder. Thus, there is always a need for flexible query systems. Fuzzy queries and fuzzy databases give us the required flexibility. In this study, a human resources evaluation system was developed into a more flexible one by applying fuzzy databases and fuzzy queries. This is a hard subject to resolve by using crisp data. The data entered into the knowledge base was evaluated through the rule bases that were created and reporting with desired flexibity was achieved.
Abstract (Original Language): 
Son yıllarda, verilerin düzenli bir şekilde tutulması kadar, istenilen bilgiye doğru ve hızlı bir şekilde ulaşmak da önem kazanmaktadır. Veritabanı sistemlerinde verilere kesin sorgular üzerinden ulaşılabilir. Fakat insanların doğaları gereği sorgulamak istedikleri şey her zaman kesin değerler olmayabilir. Bu durum, yapılan sorgularda gereksiz birçok veri ile karşı karşıya kalınmasına sebep olmaktadır. Etrafımıza baktığımızda birçok şeyin kesin değerler üzerine kurulu olmadığını ve esneklik gerektirdiğini görüyoruz. Bazı bilgilerin kişiden kişiye değişen sübjektif değerler olması sorgulama işlemini daha da zorlaştırmaktadır. Bu nedenle veritabanı sorgulamalarında esneklik kazandıracak sorgu sistemlerine ihtiyaç duyulur. Bulanık sorgulamalar ve bulanık veritabanı, veritabanlarından istenen esnekliği kazandırmaktadır. Bu çalışmada, kesin değerler üzerinde çözülmesi zor bir konu olan insan kaynakları aday seçme sisteminin, bulanık veritabanı ve sorgular kullanılarak esnek bir yapıya dönüştürülmesi ve uygulanması gösterilmiştir. Bilgi tabanına girilen verilerin, oluşturulan kural tabanları vasıtasıyla değerlendirilmesi ve sonuçların istenen esneklikte raporlanması sağlanmıştır.
41
52

REFERENCES

References: 

[1] Galindo, J. 2008. Introduction .and Trends to
Fuzzy Logic and Fuzzy.Databases, in: Handbook of
Research on Fuzzy Information Processing in
Databases, Information Science Reference, p. 1-33,
Hershey, PA, USA , 2008, vol. 1
[2] Terano, T. Sugeno.M. 1992. Fuzzy Systems
Theory and Its Applications,Academic Press, Boston.
[3] Bosc, P. Galibourg, M. Hamon G. 1988.
Fuzzy querying with SQL:extensions and
implementation aspects, Fuzzy Set. Syst. 28 333–349.
[4] Yazici,A.Koyuncu, M. Fuzzy object-oriented
database modeling coupled with fuzzy logic, Fuzzy
Set. Syst. 89 (1) (1997) 1–26.
[5] Goncalves, M. Tineo L.2001. SQLf3: an
extension of SQLf with SQL3 features, Proceedings of
the 2001 IEEE International Conference on Fuzzy
Systems 477–480.
[6] Carrasco, R., Vila, M.A., Galindo, J. 2003.
FSQL: A flexible query language for data mining.
Enterprise Information Systems, IV, 68-74. Hingham,
MA: Kluwer Academic Publishers.
[7] Ma, Z.M., Yan L.,2007, Generalization of
strategies for fuzzy query translation in classical
relational databases, Science Direct, Information and
Software Technology 49 172–180.
[8] Urrutia, A, Tineo, L, Gonzalez,C.,2008. FSQL
and SQLf Towards a Standard in Fuzzy Databases ,
in: Handbook of Research on Fuzzy Information
Processing in Databases, Information Science
Reference, p.270-298, Hershey, PA, USA: , 2008, vol.
1.
[9] Galindo, J. 2007. FSQL (fuzzy SQL): A fuzzy
query language. http://www.lcc.uma.es/~ppgg/FSQL
Son Erişim:22 Ocak 2010.
[10] Carrasco, R. A., Araque, F., Salguero A., Vila,
M. A.2008. Applying Fuzzy Data Mining to Tourism
Area, in: Handbook of Research on Fuzzy Information
Processing in Databases, Information Science
Reference, p.563-585, Hershey, PA, USA: , 2008, vol.
1.
[11] Bouaziz, R. Chakhar S., Mousseau V., Ram S.,
Telmoudi A.2007. Database design and querying
within the fuzzy semantic model, Science Direct,
Information Sciences 177 (2007) 4598–4620.
[12] J.-S.R.JANG, C.-T.SUN, E.MIZUTANI,
“Neuro Fuzzy and Soft Computing”,Prince Hall”,1-
52,1997.
[13] Timothy J.Ross, “Fuzzy Logic with
Engineering Applications Second Edition”, John
Wiley & Sons Ltd”, 1-114, 2004.
[14] Okyay KAYNAK, HUTEN Bulanık Mantık
Ders Notları.
[15] Galindo,J., Urrutia,A. Piattini, M. 2005.
”Fuzzy Databases:Modeling, Design and
Implementation”, Idea Group Publishing, 341 sf.,
USA.
[16] Hassine M., Touzi, A. Galindo J., Ounelli
,H.2008. How to Achieve Fuzzy Relational Databases
Managing Fuzzy Data and Metadata in: Handbook of
Research on Fuzzy Information Processing in
Bulanık Veritabanı ve Bulanık Sorgular Kullanılarak, İnsan Kaynakları Aday Seçme Sistemi Modelinin
Oluşturulması ve Uygulanması
ATA, KURNAZ
52
Databases, Information Science Reference, p.351-380,
Hershey, PA, USA: , 2008, vol. 1.
[17] Bordogna, G, Psaila, G. 2008.
Customizable.Flexible.Querying.for.Classical.Relation
al. Databases. , in: Handbook of Research on Fuzzy
Information Processing in Databases, Information
Science Reference, p.191-217, Hershey, PA, USA,
2008, vol. 1.

Thank you for copying data from http://www.arastirmax.com