Buradasınız

SÜRTÜNME KARIŞTIRMA KAYNAĞI VE HAVACILIK VE UZAY ENDÜSTRİSİNDEKİ UYGULAMA ALANLARI

FRICTION STIR WELDING AND AEROSPACE APPLICATIONS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
The difficulty of producing welded joints having high strength and fatigue and corrosion resistance with 2xxx and 7xxx series aluminum alloys which are widely used in aerospace industry has inhibited the use of joining aerospace structures by welding method. These aluminum alloys have been classified as non-weldable because of exhibiting poor solidification microstructure and porosity in the fusion zone. Also, compared to the nonwelded base material, there is a substantial loss in mechanical properties. These factors cause the refusal of joining of these high strength alloys by conventional fusion welding methods. Therefore riveting has been widely used in aerospace structural constructions. This means production problems, increased weight, higher costs, and corrosion and stress concentrations around rivet holes. Friction Stir Welding (FSW) as a solid-state welding method is successfully addressing these issues. In this paper the Friction Stir Welding process is shortly introduced. The properties of this welding method, advantages and disadvantages compared to the traditional welding methods, the materials to be joined and the aerospace applications of FSW is investigated by reviewing up to date literature.
Abstract (Original Language): 
Havacılık endüstrisinde oldukça yaygın bir şekilde kullanılan 2xxx ve 7xxx serisi alüminyum alaşımları ile yüksek mukavemetli, yorulma ve korozyona karşı dayanıklı kaynaklı birleştirmelerin üretimindeki güçlükler, havaaracı yapılarında kaynakla birleştirme yöntemini uzun bir süre engellemiştir. Bu alüminyum alaşımları, ergime bölgesinde sergiledikleri kötü katılaşma mikroyapısı ve poroziteden dolayı genelde “kaynak yapılamaz” olarak sınıflandırılmışlardır. Ayrıca kaynak yapılmamış ana malzemeye nazaran mekanik özelliklerindeki düşüş de yüksektir. Bu etkenler bu alaşımların birleştirilmesinde geleneksel kaynak yöntemlerinin kullanımını önlemiştir. Bu nedenle havacılık endüstrisindeki yapısal birleştirmelerin büyük kısmında perçin kullanılmaktadır. Bu da imalat zorluklarına, ağırlığa, yüksek maliyetlere, perçin deliklerinde korozyona ve gerilme konsantrasyonlarına neden olmaktadır. Bu olumsuz durum bir katı faz kaynağı olan Sürtünme Karıştırma Kaynağının (FSW) geliştirilmesi ile ortadan kaldırılmıştır. Bu çalışmada ilk olarak Sürtünme Karıştırma Kaynağının nasıl çalıştığı tanımlanmış, ardından da bu kaynak yönteminin özellikleri, geleneksel kaynak yöntemlerine göre avantaj ve dezavantajları, kaynak yapılabilecek malzemeler ve özellikle havacılık ve uzay endüstrisindeki kullanım alanları güncel literatür derlenerek incelenmiştir.
25
33

REFERENCES

References: 

[1] Buffa, G., Campanile, G., Fratini, L. ve Prisco,
A., “Friction Stir Welding of Lap Joints: Influence of
Process Parameters on The Metallurgical and
Mechanical Properties”, Materials Science and
Engineering A Vol. 519, 19-26, 2009.
[2] Mishra, R.S. ve Ma, Z.U., “Friction Stir
Welding and Processing”, Materials Science and
Engineering R Vol. 50, 1-78, 2005.
[3] www.fswelding.com
[4] Mendez, P.F. ve Eagar, T.W., “New Trends in
The Welding in The Aeronautic”, 2nd Conference of
New Manufacturing Trends, Biboa, Spain, November
19-22, 2002.
[5] Dalkılıç, S. ve Biallas, G., “FSW Joints of an
Aluminium Base Metal Matrix Composite and
Monolithic Aluminium Alloy”, 6th International
Symposium on Friction Stir Welding, Saint-Sauveur,
Canada, October 10-13, 2006.
[6] Singh, R., “Applied Welding Engineering:
Processes, Codes and Standards”, Elsevier Inc., 2012.
[7] Andreza, S.F., Fernano, F.F. ve Dilermando,
N.T., “Microstructural Aspects and mechanical
Properties of Friction Stir Welded AA2024-T3
Aluminium alloy Sheet”, Materials and Design, Vol.
32, 1684-4688, 2011.
[8] Lombard, H., Hattingh, D.G., Steuwer, A. ve
James, M.N., “Optimizing FSW Process Parameters to
Minimise Defects and Maximise Fatigue Life in 5083-
H321 Aluminium Alloy”, engineering Fracture
Mechanics, Vol. 75, 341-354, 2008.
[9] Malarvizhi, S. ve Balasubramanian, “Effect of
Welding Processes on AA2219 Aluminium Alloy
Joint Properties”, Transactions of Nonferrous Metals
Society of China, Vol. 21, 962-973, 2011.
[10] Malarvizhi, S. ve Balasubramanian “Fatigue
Crack Growth Resistance of Gas Tungsten Arc,
Electron Beam and Friction Stir Welded Joints of
AA2219 Aluminium Alloy”, Materials & Design,
Vol. 32, 1205-1214, 2011.
[11] Moreira, P.M.G.P., De Figueiredo, M.A.V. ve
De Castro, P.M.S.T., “Fatigue Behaviour of FSW
and MIG Weldments for Two Aluminium Alloys”,
Theoretical and Applied Fracture Mechanics, Vol. 48,
169-177, 2007.
[12] Maggiolino, S. ve Schmid, C., “Corrosion
Resistance in FSW and in MIG Welding Techniques
of AA6XXX”, Journal of Materials Processing
Technology Vol. 197, 137-240, 2008.
[13] Jiang, J.Z., Wen, H.J. ve Chen, L.J.,
“Comparative Investigation of Tungsten Inert Gas and
Friction Stir Welding Characteristics of Al-Mg-Sc
Alloy Plates”, Materials & Design, Vol. 31, 306-311,
2010.
[14] Rajakumar, S., Muralidharan, C ve
Balasubramanian, V., “Influence of Friction Stir
Welding Process and Tool Parameters on Strength
Properties of AA7075-T6 Alloy Joints”, Materials &
Design, Vol. 32, 535-549, 2011.
[15] Ahn, B.V., Choi, D.H., Kim, D.J. ve Jung,
S.B., “Microstructures and Properties of Friction Stir
Welded 409L Stainless Steel Using a Si3N4 Tool”,
Materials Science and Engineering A, Vol. 532, 476-
479, 2012.
[16] Hattingh, D.G., Blidnault, C., van Niekerk, T.I
ve James, M.N., “Characterisation of The Influences
of FSW Tool Geometry on Welding Forces and Weld
Tensile Strength Using an Instrumented Tool”,
Journal of Materials Processing Technology Vol. 203,
46-57, 2008.
[17] Yang, Q., Li, X., Chen, K. ve Shi, Y.J., “Effect
of Tool Geometry and Process Condition on Static
Strength of a Magnesium Friction Stir Lap Linear
Weld”, Materials Science and Engineering A, Vol.
528, 2463-2478, 2011.
[18] Padmanaban, G. ve Balasubramanian, V.,
“Selection of FSW Tool Pin Profile, Shoulder
Diameter and Material for Joining AZ31B Magnesium
Alloy-An Experimental Approach”, Materials &
Design, Vol. 30, 2647-2656, 2009.
[19] Xie, G.M., Ma, Z.Y., Luo, Z.A., Xue, P. ve
Wang, G.D., “Effect of Rotation Rate on
Microstructures and Mechanical Properties of FSW
Mg-Zn-Y-Zr Alloy Joints”, J. Mater. Sci. Technol.,
Vol. 27, 1157-1164, 2011.
[20] Rajakumar, S., Muralidharan, C. ve
Balasubramanian, V., “Predicting Tensile Strength,
Hardness and Corrsion Rate of Friction Stir welded
AA6061-T6 Aluminium Alloy Joints”, Materials &
Design, Vol. 32, 2878-2890, 2011.
[21] Simar, A. ve diğerleri, “Integrated Modeling of
Friction Stir Welding of 6XXX Series Al Alloys:
Process, Microstructure and Properties”, Progress in
Materials Science, Vol. 57, 95-183, 2012.
[22] Ulysse, P., “Three-Dimensional Modelling of
Friction Stir Welding Process”, Machine Tools and
Manufacture, Vol. 42, 1549-1557, 2002.
[23] Wang, K.S. ve diğerleri, “Evaluation of
Microstructure and Mechanical Property of FSW
Welded MB3 Magnesium Alloy”, Journal of Iron and
Steel Research International, Vol. 13, 75-78, 2006.
[24] Zhao, Y., Sato, Y.S., Kokawa, H. ve Wu, A.,
“Microstructure and Properties of Friction Stir Welded
Sürtünme Karıştırma Kaynağı ve Havacılık ve Uzay Endüstrisindeki Uygulama Alanları
DALKILIÇ
33
High Strength Fe-36 wt%Ni Alloy”, Materials Science
and Engineering A, Vol. 528, 7768-7773, 2011.
[25] Fratini, L., Micari, F., Buffa, G. ve Ruisi, V.F.,
“A New Fixture for FSW Processes of Titanium
Alloys”, CIRP Annls-Manufacturing Technology, Vol.
59, 271-274, 2010.
[26] Liu, P., ve diğerleri, “Microstructure and XRD
Analysis of FSW Joints for Copper T2/Aluminum
5A06 Dissimilar Materials”, Materials Letters, Vol.
62, 4106-4108, 2008.
[27] Esmaeili, A., ve diğerleri, “A Metallurgical and
Mechanical Study on dissimilar Friction Stir Welding
of Aluminum 1050 to Brass (CuZn30)”, Materials
Science and Engineering A, Vol.528, 7093-7102,
2011.
[28] Cavaliere, P. ve Panella, F., “Effect of Tool
Position on the Fatigue Properties of Dissimilar 2024-
7075 Sheets Joined by Friction Stir Welding ”,
Journal of Materials Processing Technology Vol. 206,
249-255, 2008.
[29] Da Silva, A.A.M. ve diğerleri, “Material Flow
and Mechanical Behaviour of Dissimilar AA2024-T3
and AA7075-T6 Aluminium Alloys Friction Stir
Welds”, Materials & Design, Vol. 32, 2021-2027,
2011.
[30] Aonuma, M. ve Nakata, K., “Dissimilar Metal
Joining of ZK60 Magnesium Alloy and Titanium by
Friction Stir Welding”, Materials Science and
Engineering B, Vol. xxx, 2012.
[31] Dressler, U., Biallas, G. ve Mecado, U.A.,
“Friction Stir Welding of Titanium Alloy TiAl6V4 to
Aluminium Alloy AA2024-T3”, Materials Science
and Engineering A, Vol. 526, 113-117, 2009.
[32] Minak, G., Ceschini, L., Boromei, I. ve Ponte,
M., “Fatigue Properties of Friction Stir Welded
Particulate Reinforced Aluminium Matrix
Composites”, International Journal of Fatigue, Vol.
32, 218-226, 2010.
[33] Amancio-Filho, S.T. ve diğerleri, “On The
Feasibility of Friction Spot Joining in
Magnesium/Fiber Reinforced Polymer Composite
Hybrid Structures”, Materials Science and
Engineering A, Vol. 528, 3841-3848, 2011.
[34] Höflich, W., EADS Technology Licensing
Initiative Webinar”, Sept. 30, 2010.
www.technologylicencing.eads.net
[35] Tempus, G., “New Aluminium Alloys and
Fuselage Structures in Aircraft Design”, Wekstoffe Für
Transport und Verkehr, May 18, 2001, Zurich,
Switzerland.
[36] Richter-Trummer, V. ve diğerleri, “Influence
of the FSW Clamping Force on the Final Distortion
and Residual Stress Field”, Materials Science and
Engineering A, Vol. xxx, 2012.
[37] www.twi.co.uk
[38] Sullivan, A. ve diğerleri, “Microstructure
Simulation and Ballistic Behaviour of Weld Zones in
Friction Stir Welds in High Strength Aluminium 7xxx
Plate”, Materials Science and Engineering A, Vol.
528, 3409-3422, 2011.
[39] Gross, D. ve diğerleri, “Method for Joining
Aircraft Fuselage elements by Friction Stir Welding”,
United States Patent Publication No. Us
2009/0294018 A1, 2009.
[40] www.wikipedia.org
[41] Li, B., Shen, Y. ve Hu, W., “The Study on
Defects in Aluminium 2219-T6 Thick Butt Friction
Stir Welds with the Application of Multiple Nondestructive
Testing Methods”, Materials & Design,
Vol. 32, 2073-2084, 2011.
[42] Vugrin, T., Staniek, G., Hillger, W. Ve Dalle
Donne, C., “Non Destructive Detection of Flaws and
Their Metallographic Characterization”, 5th
International FSW Symposium, Metz, France,
September 14-16, 2004.

Thank you for copying data from http://www.arastirmax.com