Buradasınız

DEĞİŞİK BAKIŞ AÇILARINDAN ELDE EDİLEN GÖRÜNTÜ GRUPLARININ SINIFLANDIRILMASI

CLASSIFICATION OF VIEWPOINT INDEPENDENT IMAGE GROUPS

Journal Name:

Publication Year:

Abstract (2. Language): 
Classification of image groups has different applications in remote sensing, photogrammetry, digital painting catalogues and security related areas. Researchers from remote sensing, computer vision and photogrammetry have used different approaches based on image features (color, textures, object shapes) in order to develop robust classification methods. In this study, classification of viewpoint independent image groups is developed based on the principle of invariant properties of conic sections under projective transformation. At the beginning of this study a data set is created for testing the method. This dataset consists of nine categories of images, for each category ten images used that are taken from different viewpoints. Edge detection is applied on each image to detect boundary of objects in images. Detected edges are used for conic fitting so that each conic will be represented as a set of conic sections. Under projective transformation conic sections remain as conic section even if their shapes change. For each image in the dataset an invariant signature is computed using set of conic sections. It is assumed that there is similarity between invariant signatures of images belong to the same image category. These invariant signatures are used in histogram form for visual representation and computations.Since invariant signatures are high dimensional data, Support Vector Machines which is a stochastic pattern recognition algorithm is used instead of classical deterministic methods. Performance of classification is evaluated using ROC (Receiver Operating Characteristics) analysis.
Abstract (Original Language): 
Görüntü gruplarının sınıflandırılmasının, uzaktan algılama, fotogrametri, dijital tablo katalogları ve güvenlik alanlarında değişik uygulamaları mevcuttur. Uzaktan algılama, bilgisayarla görme ve fotogrametri disiplinlerinde çalışan araştırmacılar güçlü sınıflandırma metodları geliştirebilmek için görüntü özelliklerini (renk, doku, şekil) temel alan yaklaşımlar kullanmışlardır. Bu çalışmada, değişik bakış açılarından elde edilen farklı görüntülere ait grupların sınıflandırılması, konik kesitlerin projektif dönüşüm altında değişmezliği prensibine dayanarak geliştirilmiştir. Çalışmanın başlangıcında, test amaçlı bir veri seti oluşturulmuştur. Bu veri seti dokuz ayrı objeden farklı bakış açılarından on görüntü alınması ile toplam doksan görüntüden oluşmaktadır. Veri seti oluşturulduktan sonra objelerin sınırlarının belirlenmesi amacıyla bütün görüntüler üzerinde kenar tanıma işlemi uygulanmıştır. Kenar tanıma işlemi ile elde edilen kenarlar üzerine, geometrisine bağlı olarak konik kesitler oturtulmuştur. Bu işlem sonucunda her görüntü bir konik kesit kümesiyle ifade edilmiştir. Konik kesitler projektif dönüşüme uğradığında şekli değişse bile yine bir konik kesit oluşmaktadır. Her görüntüyü temsil eden konik kesit kümesi kullanılarak görüntüler için bir değişmez işaret hesaplanmıştır. Aynı gruba ait görüntülerin değişmez işaretleri arasında bir benzerlik olacağı varsayılmıştır. Bu değişmez işaretler görsellik sağlaması ve hesaplamalarda kolaylık olması amacıyla histogramlara dönüştürülmüştür. Her görüntüye ait değişmez işaretler çok boyutlu veriler olduklarından dolayı aralarında benzerlik olup olmadığını tespit etmek için Destek Vektör Makineleri uygulanmıştır. Sınıflandırmanın performansını ölçebilmek için ROC(Receiver Operating Characteristics) analizleri yapılmıştır.
87
94

REFERENCES

References: 

[1] Rui, Y., Huang, S., Chang, S.F., (1999),
“Image Retrieval: Current Techniques, Promising
Directions, and Open Issues”, Journal of Visual
Communication and Image Representation, Vol.10,
No.1 ,pp.39-62.
[2] Stricker, M., Orengo, M., (1995), “Similarity
of Color Images”, Storage and Retrieval for Image
and Video Databases (SPIE)'95Konferansı, CA,
ABD,pp.381-392.
[3] Swain, M.J., Ballard, D.H., (1991), “Color
Indexing”, International Journal of Computer
Vision, Vol. 7 No. 1 pp. 11-32.
[4] Niblack, W., Barber, R., Equitz, W., Flickner,
M., Glasman, E., Petkovic, D., Yanker, P.,
Faloutsos, C., Taubin, G., (1993) “The QBIC
Project: Querying Images by Content, Using Color,
Texture, and Shape”, Storage and Retrieval for
Image and Video Database (SPIE), Vol. 1908, pp.
173-187.
[5] Smith, J.R., Chang, S.F., (1996), “Tools and
Techniques for Color Image Retrieval”, IS&T/SPIE,
Vol.2670, pp. 426-437.
[6] Deng, Y., Manjunath, B. S., Kenney, C.,
Moore, M. S., Shin, H., (2001), “An Efficient Color
Representation for Image Retrieval”, IEEE
Transactions on Image Processing, Vol. 10, No. 1,
pp. 140-147.
[7] Ma, W. Y., Manjunath, B. S., (1997), “Edge
Flow: A Framework for Boundary Detection and
Image Segmentation”, IEEE Conference on
Computer Vision and Pattern Recognition, pp.744-
749.
Değişik Bakış Açılarından Elde Edilen Görüntü Gruplarının Sınıflandırılması
ÖZENDİ, YILMAZ
94
[8] GimelFarb, G. L., Jain, A. K., (1996), “On
Retrieving Textured Images From an Image
Database”, Pattern Recognition, Vol. 29, No.9, pp.
1461-1483.
[9] Carter, P. H., (1991), “Texture
Discrimination Using Wavelets”, SPIE Applications
of Digital Image Processing XIV, Vol. 1567,pp. 432-
438.
[10] Manjunath, B. S., Ma, W. Y., (1996),
“Texture Features for Browsing and Retrieval of
Image Data, IEEE Transactions on Pattern Analysis
and Machine Intelligence”, Vol. 18, No. 8,pp. 837-
842.
[11] Choi, H., Baraniuk, R. G., (1999),
“Multiscale Image Segmentation Using Wavelet-
Domain Hidden Markov Models”, IEEE
Transactions on Image Processing,Vol. 10, pp.
1309-1321.
[12] Do, M. N., Vetterli, M., (2002), ‘Wavelet-
Based Texture Retrieval Using Generalized
Gaussian Density and Kullback-Leibler Distance”,
IEEE Transactions on Image Processing, Vol. 11,
No.2, pp. 146-158.
[13] Li, C. S., Castelli, V., (1997), “Deriving
Texture Feature Set for Content – Based Retrieval of
Satellite Image Database’, ICIP 97 Konferansı,
Washington DC, ABD , pp: 576-579.
[14] Randen, T., Husoy, J. H., (1999), “Filtering
for Texture Classification: A Comparative Study,
IEEE Transactions on Pattern Analysis and Machine
Intelligence”, Vol. 21, No.4, pp. 291-310.
[15] Zhang, D., Wong, A., Indrawan, M., Lu, G.,
(2000), “Content Based Image Retrieval Using
Gabor Texture Features”, IEEE Transactions PAMI,
pp.13-15.
[16] Fu, X., Li, Y., Harrison, R., Belkasim, S.,
(2006), “Content Based Image Retrieval Using
Gabor-Zernike Features”, ICPR 06 Konferansı,
Hong Kong, pp. 417-420.
[17] Datta, R., (2008), “Image Retrieval: Ideas,
Influences, and Trends of the New Age”, ACM
Computing Surveys,Vol.40, No.2, pp.1-60.
[18] Zahn, C. T., Roskies, R. Z., (1972), “Fourier
Descriptors for Plane Closed Curves”, IEEE
Transactions on Computer, Vol. 21, No. 3, pp. 269-
281.
[19] Persoon, E., Fu, K. S., (1977), “Shape
Discrimination Using Fourier Descriptors”, IEEE
Transactions on Systems Man and Cybernetics,
SMC- Vol. 7, No.3, pp. 170-179.
[20] Hu, M. K., (1962), “Visual Pattern
Recognition by Moment Invarıants, Computer
Methods in Image Analysis”, IRE Transactions on
Information Theory,Vol. 8.
[21] Yang, L., Albregtsen, F., (1994), “Fast
Computation of Invariant Geometric Moments: A
New Method Giving Correct Results”,12th IAPR
International Conference on Computer Vision &
Image Processing, Kudüs, İsrail, pp. 201-204.
[22] Mundy, J. L., Zisserman, A., (1992),
“Geometric Invariance in Computer Vision”,
(Cambridge, MA, USA: MIT Press).
[23] Srestasathiern, P., (2008), “View Invariant
Planar – Object Recognition”, Yüksek Lisans Tezi,
The Ohio State University.
[24] Maini, R., Aggarwal, H., (2009), “Study and
Comparison of Various Image Edge Detection
Techniques”, International Journal of Image
Processing, 3(1),1-12.
[25] ParisS,2009,
http//www.mathworks.com/matlabcentral/fileexchan
ge/22997-Multiclass-Gentleadaboosting,
(13.09.2012).
[26] http://math2.org/math/algebra/conics.htm,
(1.10.2012).

Thank you for copying data from http://www.arastirmax.com