Buradasınız

PARÇACIK SÜRÜ OPTİMİZASYON VE GENETİK ALGORİTMA İLE HAVA MUHAREBESİ

AIR COMBAT WITH PARTICLE SWARM OPTIMIZATION AND GENETIC ALGORITHM

Journal Name:

Publication Year:

Author Name
Abstract (2. Language): 
The future of aircrafts is in unmanned aerial vehicles (UAVs), and any improvement in UAVs will play an important role, especially when it comes to intelligence and capabilities for air combat manoeuvring. The ultimate goal in such work is to bring computers to the level of a pilot’s intelligence capability in air combat. In order to achieve this goal, operations research is required. The present study is based on the fight or flight situation in air combat manoeuvring and aims to improve unmanned aircrafts and better understand the difficulties of modelling intelligence. Since the project’s focus is on the problem of path planning for moving targets and enemy situations, particle swarm optimization and genetic algorithms are modelled and tested against each other in a dog fight scenario. Also, multiple targets and enemies’ scenarios are developed to compare them against each other. Moreover, imperfect information affect and dynamic environment are evaluated in this research and required actions and options are analysed. Overall, this research aims to show the importance of artificial intelligence, articulate the role of the operations research and assess the implementation of intelligence through certain heuristics
Abstract (Original Language): 
Uçak sektörünün geleceği İnsansız Hava Araçlarında (İHA) görülmekte ve İHA’larda gerçekleştirilecek herhangi bir gelişme de özellikle hava muharebe manevrası için gereken beceri ve zeka hususunda büyük bir rol oynayacaktır. Böyle bir çalışmada temel amaç, hava munarebesi hususunda bilgisayarları, pilotların zeka becerisi seviyesine getirmektir. Bu amacın gerçekleştirilmesinde de yöneylem araştırması olmazsa olmazdır. Mevcut çalışma, hava muharebe manevra konusunda savaş ve uçuş durumuna dayanmaktadır ve bu çalışma ile insansız uçakları geliştirmeyi ve zekanın modellenmesine dair problemleri ve zorlukları daha iyi anlamak hedeflenmiştir. Projenin hedef noktası, hareket halindeki hedefleri ve düşman saldırı durumları için rota planlama problemi olduğundan ötürü, parçacık sürü optimizasyonu ve genetik algoritmalar modellenmiştir ve bu algoritmalar, bir it-dalaşı senaryosunda birbirlerine karşı test edilmişlerdir. Ayrıca, çoklu hedefler ve düşmanlar üzerinden senaryolar, bu algoritmaların birbirlerine göre kıyaslanmaları için geliştirilmiştir. Bunların yanı sıra, eksik bilgi etkisi ve dinamik çevre, bu araştırma dahilinde değerlendirilmiş ve gerekli hareket ve opsiyonlar analiz edilmiştir. Genel olarak, bu çalışma, yapay zekanın önemini göstermeyi, yöneylem araştırmasının rolünün açıklanmasını ve belli sezgisel yöntemlerle zekanın uygulaması hedeflemiştir.
25
35

REFERENCES

References: 

[1] J. Kaneshige and K. Krishnakumar, "Artificial
Immune System Approach for Air Combat
Maneuvering," Intelligent Computing: Theory and
Applications V, vol. 6560, 2007.
[2] M. Hoffman, "UAV pilot career field could
save $1.5B," Airforcetimes, 1 March 2009. [Online].
Available:
http://www.airforcetimes.com/article/20090301/NEW
S/903010326/UAV-pilot-career-field-could-save-1-
5B. [Accessed 12 July 2013].
[3] A. Y. Javaid, W. Sun, V. K. Devabhaktuni and
m. Alam, "Cyber Security Threat Analysis and
Modeling of an Unmanned Aerial Vehicle System," in
2012 IEEE Conference on Technologies for
Homeland Security, 2012.
[4] J. Luo, "Some New Optimal Control Problems
in UAV Cooperative Control with Information Flow
Constraints," in American Control Conference 2003,
2003.
[5] Y. V. Pehlivanoğlu, "A New Particle Swarm
Optimization Method for the Path Planning of UAV in
3D Environment," Havacılık ve uzay teknolojileri
dergisi, vol. 5, no. 4, pp. 1-14, 2012.
[6] T. Furukawa, F. Bourgault, B. Lavis and H. F.
Durrant-Whyte, "Recursive Bayesian Search-and-
Tracking Using Coordinated UAVs for Lost Targets,"
in Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, Orlando,
2006.
[7] R. D. Myungsoo Jun, "Path Planning for
Unmanned Aerial Vehicles in Uncertain and
Adversarial Environments," Cooperative Systems, vol.
1, pp. 95-110, 2003.
[8] J. Kim, "Discrete approximations to continuous
shortest-path: application to minimum-risk path
planning for groups of UAVs," Decision and Control,
vol. 2, pp. 1734-1740, 2003.
[9] C. Sabo and K. Cohen, "SMART Heuristic for
Pickup and Delivery Problem (PDP) with Cooperative
UAVs," in Infotech@Aerospace, 2011.
[10] A. Richards, J. Bellingham, M. Tillerson and J.
How, "Coordination and Control of Multiple UAVs,"
in AIAA Guidance, Navigation, and Control
Conference and Exhibit, 2002.
[11] D. E. Goldberg and K. Sastry, Genetic
Algorithm, New York: Springer-Verlag New York
Incorporated, 2002.
[12] H. Zhu, Z. M. and R. Alkins, "Group Role
Assignment via a Kuhn–Munkres Algorithm-Based
Solution," IEEE Transactions On Systems, Man, And
Cybernetics—Part A: Systems And Humans, vol. 42,
no. 3, pp. 739-750, 2012.

Thank you for copying data from http://www.arastirmax.com