Buradasınız

ATMOSFERİK GEÇİŞ YAPAN ARAÇ ETRAFINDA NAVIER-STOKES DENKLEMLERİ İLE ÜÇ BOYUTLU HİPERSONİK AKIŞ ANALİZİ

ANALYSIS OF THREE DIMENSIONAL HYPERSONIC FLOW AROUND RE-ENTRY VEHICLE USING NAVIER-STOKES EQUATIONS

Journal Name:

Publication Year:

Abstract (2. Language): 
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton’s method and the analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Space Capsule. Also, one-equation Spalart- Allmaras turbulence model is used to analyze hypersonic turbulent flow since this turbulence model is numerically robust and generally gives good predictions in hypersonic applications.
Abstract (Original Language): 
Bu çalışmada hipersonik akışlar için kullanılabilecek isabetli ve etkin bir hesaplamalı akışkanlar dinamiği kodu geliştirilmesi amaçlanmaktadır. Akış analizi üç boyutlu Navier-Stokes denklemlerini temel almaktadır. Bu denklemler Newton metoduyla çözülmekte ve Jacobian matrislerini hesaplamak için analitik metot kullanılmaktadır. Model olarak alınan AS-202 Apollo uzay aracı geometrisi üzerinde akış parametreleri ve taşınımla ısı transferi analiz edilecektir. Ayrıca nümerik olarak stabil olan ve genelde hipersonik akış uygulamalarında iyi tahminler sağlayan Spalart-Allmaras türbülans modeli kullanılarak hipersonik akış için türbülanslı akış analizi yapılacaktır.
71
77

REFERENCES

References: 

[1] Ballmann, J., Coratekin, T., Keuk, J. (2004)
‘’Performance of Upwind Schemes and Turbulence
Models in Hypersonic Flows’’, AIAA Journal, Vol.42,
No.5
[2] Paciorri R., Dieudonne W., Degrez G.,
Charbonnier J.M., Deconinck H. (1998), ‘’Exploring
the Validity of the Spalart–Allmaras Turbulence
Model for Hypersonic Flows’’, Journal of Spacecraft
and Rockets, Vol. 35, No. 2
[3] Gorshkov, A.B. (2011), ‘’Heat Transfer -
Mathematical Modeling, Numerical Methods and
Information Technology’’, ISBN 978-953-307-550-1
[4] Blottner, F.G., Roy, C.J. (2006) ‘’ Review and
assessment of turbulence models for hypersonic
flows’’, Progress in Aerospace Sciences, 42 (2006)
469-530
[5] Blottner, F.G., Roy, C.J., (2003) ‘’Methodology
for Turbulence Model Validation: Application to
Hypersonic Flows’’, Journal of Spacecraft and
Rockets, Vol.40, No.3
[6] Blottner, F.G., Roy, C.J., (2001) ‘’Assessment of
One- and Two-Equation Turbulence Models for
Hypersonic Transitional Flows’’, Journal of
Spacecraft and Rockets, Vol.38, No.5
[7] Teramoto S., Hiraki K., Fujii K. (2001)
“Numerical Analysis of Dynamic Stability of a
Reentry Capsule at Transonic Speeds”, AIAA Journal,
Vol.39, No.4
[8] Reddy D.S.K., Sinha K. (2011) “Effect of
Chemical Reaction Rates on Aeroheating Predictions
of Reentry Flows”, Journal of Thermophysics and
Heat Transfer, Vol.25, No.1
[9] Shang J.S., Surzhikov S.T., (2010) “Simulating
Nonequlibrium Flow for Ablative Earth Reentry”,
Journal of Spacecraft and Rockets, Vol.47, No.5
[10] Spalart P.R., Allmaras S.R., (1992) ‘’A One-
Equation Turbulence Model for Aerodynamic
Flows’’, AIAA Paper 92-0439
[11] Cui K., Hu S.C., (2013) “Shape Design to
Minimize the Peak Heat-Flux of Blunt Leading Edge”,
51st AIAA Aerospace Sciences Meeting including the
New Horizons Forum and Aerospace Exposition,
Grapevine (Dallas/Ft. Worth Region), Texas, AIAA
2013-0233

Thank you for copying data from http://www.arastirmax.com