Buradasınız

DOLAYLI VEKİL MODEL İLE YÖNLENDİRİLEN GELİŞTİRİLMİŞ PARÇACIK SÜRÜ ENİYİLEME ALGORITMASI

IMPROVED PARTICLE SWARM OPTIMIZATION METHOD DIRECTED BY INDIRECT SURROGATE MODELING

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
An improved particle swarm optimization algorithm is proposed and tested for two different test cases: surface fitting of a wing shape and an inverse design of an airfoil in subsonic flow. The new algorithm emphasizes the use of an indirect design prediction based on a local surrogate modeling as a part of update equations in particle swarm optimization algorithm structure. For all the demonstration problems considered herein, remarkable reductions in the computational times have been accomplished.
Abstract (Original Language): 
Bu çalışma kapsamında yeni bir Parçacık Sürü Optimizasyon (PSO) algoritması geliştirilmiş ve teklif edilen algoritma iki farklı test probleminde denenmiştir. Söz konusu test problemleri kanat yüzeyi modelleme ve sesaltı akış şartlarında kanat profilinin tersten tasarımıdır. Teklif edilen yeni algoritma dolaylı vekil model kullanımına dayalı olarak öngörülen aday çözümün PSO algoritmalarındaki temel güncelleme denklemlerine ilave edilmesini öngörmektedir. Çalışma dahilinde dikkate alınan problemlerin tümünde teklif edilen algoritmanın kayda değer hesaplama süresi azaltımları sağladığı görülmüştür.
1
10

REFERENCES

References: 

[1] Peigin, S. and Epstein, B., “Robust
optimization of 2D airfoils driven by full Navier–
Stokes computations”, Computers & Fluids vol. 33,
no. 9, pp. 1175–1200, 2004.
[2] Song, W. and Keane, A.J., “A new hybrid
updating scheme for an evolutionary search strategy
using genetic algorithms and Kriging”, 46th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics & Materials Conference, AIAA paper
2005-1901, 2005.
[3] Pehlivanoglu, Y.V. and Yagiz, B.,
“Aerodynamic design prediction using surrogatebased
modeling in genetic algorithm architecture,”
Aerospace Science and Technology, 23 (2012) 479–
491, 2011.
[4] Jouhaud, J.C., Sagaut, P., Montagnac, M., and
Laurenceau, J., “A surrogate-model based
multidisciplinary shape optimization method with
application to a 2D subsonic airfoil”, Computers &
Fluids, vol. 36, no. 3, pp. 520–529, 2007.
[5] N.V. Qoeipo, R.T. Haftka, W. Shyy, T. Goel,
R. Vaidyanathan, and P.K. Tucker, “Surrogate-based
analysis and optimization”, Progress in Aerospace
Sciences, vol. 41, no. 1, pp. 1–28, 2005.
[6] A. Vavalle and N. Qin, “Iterative response
surface based optimization scheme for transonic
airfoil design”, Journal of Aircraft, vol. 44, no. 2, pp.
365-376, 2007.
[7] Keane, A.J., “Statistical improvement criteria
for use in multi objective design optimization”, AIAA
Journal, vol. 44, no. 4, pp. 879-891, 2006.
[8] Glaz, B., Goel, T., Liu, L., Friedmann, P.P.,
and Haftka, R.T., “Multiple-surrogate approach to
helicopter rotor blade vibration reduction”, AIAA
Journal, vol. 47, no. 1, pp. 271-282, 2009.
[9] Papila, N., Shyy, W., Griffin, L., and Dorney,
D.J., “Shape optimization of supersonic turbines using
global approximation methods”, Journal of
Propulsion and Power, vol. 18, no. 3, pp. 509-518,
2002.
[10] Xiong, C.Y. and Chen, W., “Multi-response
and multistage meta-modeling approach for design
optimization”, AIAA Journal, vol. 47, no. 1, pp. 206-
218, 2009.
[11] Duchaine, F., Morel, T., and Gicquel, L.Y.M.,
“Computational fluid dynamics based Kriging
optimization tool for aeronautical combustion
chambers”, AIAA Journal, vol. 47, no. 3, pp. 631-645,
2009.
[12] Praveen, C. and Duvigneau, R., “Low cost
PSO using metamodels and inexact pre-evaluation:
application to aerodynamic shape design”, Comput.
Methods Appl. Mech. Engrg. 198 1087–1096, 2009.
[13] Khurana, M.S., Winarto, H. and Sinha, A.K.,
“Airfoil optimization by swarm algorithm with
mutation and artificial neural networks”, 47th AIAA
Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition Orlando,
Florida AIAA 2009-1278, 2009.
[14] Singh, G. and Grandhi, R.V., “Mixed-variable
optimization strategy employing multi-fidelity
simulation and surrogate models”, AIAA Journal, vol.
48, no. 1, pp. 215-223, 2010.
[15] Carrese, R., Winarto, H. and Li, X.,
“Integrating user-preference swarm algorithm and
surrogate modeling for airfoil design”, 49th AIAA
Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition Orlando
Florida AIAA 2011-1246, 2011.
[16] Carrese, R., Sobester, A., Winarto, H. and Li,
X., “Swarm heuristic for identifying preferred
solutions in surrogate-based multi-objective
engineering design”, AIAA Journal, vol. 49, no. 7, pp.
1437-1449, 2011.
[17] Ong, Y. S., Nair, P. B., and Keane, A. J.,
“Evolutionary optimization of computationally
expensive problems via surrogate modeling”, AIAA
Journal, vol. 41, no. 4, pp. 687-696, 2003.
[18] Pehlivanoglu, Y.V. and Baysal, O.,
“Vibrational genetic algorithm enhanced with fuzzy
Improved Particle Swarm Optimization Method Directed by Indirect Surrogate Modeling
PEHLİVANOĞLU, AY, GÜL
10
logic and neural networks”, Aerospace Science and
Technology, vol. 14, no. 1, pp. 56-64, 2010.
[19] Hacioglu, A., “Fast evolutionary algorithm for
airfoil design via neural network”, AIAA Journal, vol.
45, no. 9, pp. 2196-2203, 2007.
[20] Pehlivanoglu, Y. V., “Improved particle swarm
optimization method in inverse design problems”, In
International Work Conference on Artificial Neural
Networks (IWANN). LNCS 7902, Rojas, I., Joya, G.,
and Cabestany, J. (Eds.), pages 218–231, 2013.
[21] Eberhart, R.C. and Kennedy, J., “A new
optimizer using particle swarm theory”, Proc. 6th Int.
Symp. Micromachine Human Sci. Nagoya Japan, pp.
39–43, 1995.
[22] Clerc, M. and Kennedy, J., “The particle
swarm-explosion, stability, and convergence in a
multidimensional complex space”, IEEE Trans. Evol.
Comput., vol. 6, no. 1, pp. 58–73, 2002.
[23] Shi, Y. and Eberhart, R., “A modified particle
swarm optimizer”, Proc. of the World Congr.
Comput. Intell, pp. 69–73, 1998.
[24] Pehlivanoglu, Y.V., “Hybrid Intelligent
Optimization Methods for Engineering Problems”,
Ph.D. Dissertation, Dept. of Aerospace Engineering,
Old Dominion Univ., Norfolk, VA, 2010.
[25] Liang, J.J., Qin, A.K., Suganthan, P.N., and
Baskar, S., “Comprehensive learning particle swarm
optimizer for global optimization of multimodal
functions”, IEEE Trans. Evol. Comput., vol. 10, no. 3,
pp. 281-295, 2006.
[26] Neural Network Toolbox, Matlab the language
of technical computing Version R2007b The
MathWorks, Inc., 2007.
[27] Gálvez, A., Cobo, A., Puig-Pey, J. and Iglesias,
A., “Particle swarm optimization for Bézier surface
reconstruction”, Lecture Notes in Computer Science,
vol. 5102, pp. 116-125, 2008.
[28] Gálvez, A., Iglesias, A., Cobo, A., Puig-Pey, J.
and Espinola, J., “Bézier curve and surface fitting of
3D point clouds through genetic algorithms,
functional networks and least-squares
approximation”, Lecture Notes in Computer Science,
vol. 4706, pp.680-693, 2007.
[29] Farin, G., Curves and surfaces for computer
aided geometric design; a practical guide, Academic
Press Inc. p. 41-42, 1993.
[30] Jameson, A., Essential Elements of
Computational Algorithms for Aerodynamic Analysis
and Design, NASA/CR-97-206268 ICASE Report
No. 97-68, p. 34-35, 1997.
[31] Anderson, J.D., Fundamentals of
Aerodynamics, Mc-Graw Hill, Inc. pp. 217-222,
1984.

Thank you for copying data from http://www.arastirmax.com