Buradasınız

Inducible Clindamycin resistance in Staphylococcus aureus in a tertiary care Rural Hospital

Journal Name:

Publication Year:

Abstract (2. Language): 
Introduction: Macrolide (MLSB) resistance is the most widespread and clinically important mechanism of resistance encountered with Gram-positive organisms. Resistance may be constitutive (cMLSB phenotype) or inducible (iMLSB phenotype). The iMLSB phenotypes are not differentiated by using standard susceptibility test methods, but can be distinguished by erythromycin-clindamycin disk approximation test (D-test) and demonstration of resistance genes by molecular methods. The present study was planned to demonstrate in vitro inducible clindamycin resistance (iMLSB) in erythromycin-resistant (ER) clinical isolates of S.aureusto guide therapy. And to find out the relationship of MRSA with inducible clindamycin resistance Materials and Methods: 256 Staphylococcusaureus isolates were examined for inducible clindamycin resistance by using D-test at 15 mm disk separation as per CLSI guidelines on erythromycin resistant isolates. Results: 142(55.46%) clinical isolates showed erythromycin resistance.76(53.52%) isolates were found to exhibit the constitutive resistance,30(21.12%) the inducible MLSB resistance phenotype and non-inducible(MS) in 36(25.35%). Two distinct induction phenotypes (18.30%) and D + (2.81%) were observed. In MRSA isolates, 39.43% had the constitutive, 13.38% had the iMLSB resistance and 16.19% had MS phenotype. In MSSA, 14.08% and 7.7% isolates were found to have the constitutive and inducible MLSB resistance phenotypes respectively while 9.15% exhibited the MS phenotype. Thus, both the constitutive and inducible resistance phenotypes werefound to be significantly higher in MRSA isolates as compared to MSSA (39.43%, 13.38 % and 14.08% and 7.7% and constitutive MLSB was predominant(53.52%) Conclusion: Study showed that D test should be used as a mandatory method in routine disc diffusion testing to detect inducible clindamycin resistance.
FULL TEXT (PDF): 
686-693

REFERENCES

References: 

1. Yilmaz G, Aydin K, Iskender S, Caylan R, Koksal I. Detection and prevalence of inducible clindamycin
resistance in staphylococci. J Med Microbiol 2007;56:342-5.
2. Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH. Practical disc diffusion method for detection
of inducible clindamycin resistance in Staphylococcus aureus and coagulase negative Staphylococci. J
ClinMicrobiol 2003;41:4740-4.
3. Gadepalli R, Dhawan B, Mohanty S, Kapil A, Das BK, Chaudhry R. Inducible clindamycin resistance in
clinical isolates of Staphylococcus aureus. Indian J Med Res 2006;123:571-3.
4. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob Agents Chemother1995;
39:577–85.
5. Ross JI, Farrell AM, Eady EA, Cove JH, Cunliffe WJ. Characterisation and molecular cloning of the novel
macrolide–streptogramin B resistance determinant from Staphylococcus epidermidis. J
AntimicrobChemother1989; 24:851–62.
6. Roberts, M. C., J. Sutcliffe, P. Courvalin, L. B. Jensen, J. Rood, and H. Seppala. 1999. Nomenclature for
macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother.43:2823-
2830.
7. Brisson-Noel A, Delrieu P, Samain D, Courvalin P. Inactivation of lincosaminide antibiotics in
Staphylococcus. Identification of lincosaminide O-nucleotidyltransferases and comparison of the
corresponding resistance genes. J BiolChem 1988;263:15880-7.
8. Steward CD, Raney PM, Morrell AK, Williams PP, McDougal LK, Jevitt L, et al. Testing for induction of
clindamycin resistance in erythromycin resistant isolates ofStaphylococcus aureus. J ClinMicrobiol
2005;43:1716-21.
9. Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing;
Seventeenth informational supplement. Vol. 27. No.1 Clinical Laboratory Standards Institute; 2007.
10. Kloos WE, Banerman TL. Staphylococcus and Micrococcus. In: Murray PR, Baron EJ, Pfaller MA,
Tenover FC, Yolken RH, editors. 7 thed, Chapter 22. Manual of clinical microbiology. Washington DC:
ASM Press; 1999. p. 264-82.
11. Eclercq R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and
their clinical implications. Clin Infect Dis 2002;34:482-92.
12. Gupta V, Datta P, Rani H, Chander J. Inducible clindamycin resistance inStaphylococcus aureus: A study
from North India. J Postgrad Med 2009;55:176-9.
13. Jenssen WD, Thakker-Varia S, Dubin DT, Weinstein MP. Prevalence of macrolides-lincosamidesstreptogramin
B resistance and erm gene classes among clinical strains of staphylococci and streptococci.
Antimicrob Agents Chemother 1987;31:883-8.
14. Angel MR, Balaji V, Prakash JA, Brahmandathan KN, Mathews MS. Prevalence of inducible clindamycin
resistance in gram positive organisms in a tertiary care centre. Indian J Med Microbiol 2008;26:262-4.
Indian Journal of Basic & Applied Medical Research; June 2013: Issue-7, Vol.-2, P. 686-693
693
www.ijbamr.com P ISSN: 2250-284X E ISSN: 2250-2858
15. Pal N, Sharma B, Sharma R, Vyas L. Detection of inducible clindamycin resistance among Staphylococcal
isolates from different clinical specimens in western India. J Postgrad Med 2010;56:182-5.
16. Prabhu K, Rao S, Rao V. Inducible clindamycin resistance inStaphylococcus aureus isolated from clinical
samples. J Lab Physicians 2011;3:25-7.
17. Ciraj AM, Vinod P, Sreejith G, Rajani K. Inducible clindamycin resistance among clinical isolates of
staphylococci. Indian J PatholMicrobiol 2009;52:49-5.
18. Deotale V, Mendiratta DK, Raut U, Narang P. Inducible clindamycin resistance in Staphylococcus aureus
isolated from clinical samples. Indian J Med Microbiol 2010;28:124-6.
19. Goyal R, Singh NP, Manchanda V, Mathur M. Detection of clindamycin susceptibility in macrolides
resistant phenotypes of Staphylococcus aureus. Indian J Med Microbiol 2004;22:251-4.
20. Ajantha GS, Kulkarni RD, Shetty J, Shubhada C, Jain P. Phenotypic detection of inducible clindamycin
resistance amongst Staphylococcus aureus isolates by using lower limit of recommended inter-disk
distance. Indian J PatholMicrobiol 2008;51:376-8.
21. Schreckenberger PC, Ilendo E, Ristow KL. Incidence of constitutive and inducible clindamycin resistance
in Staphylococcus aureus and coagulase-negative staphylococci in a community and a tertiary care hospital.
J ClinMicrobiol 2004;42:2777-9.
22. Levin TP, Suh B, Axelrod P, Truant AL, Fekete T. Potential clindamycin Resistance in clindamycinsusceptible,
erythromycin-resistant Staphylococcus aureus: Report of a clinical failure. Antimicrob Agents
Chemother 2005;49:1222-4.
23. Saikia L, Nath R, Choudhury B, Sarkar M. Prevalence and antimicrobial susceptibility pattern of
methicillin-resistant Staphylococcus aureus in Assam. Indian J Crit Care Med 2009;13:156-8
24. Fokas S, Fokas S, Tsironi M, Kalkani M, DionySopouloy M. Prevalence of inducible clindamycin
resistance in macrolide-resistant Staphylococcus spp. ClinMicrobiolInfect 2005; 11 : 337-40.
25. Sireesha P, Setty CR. Detection of various types of resistance patterns and their correlation with minimal
inhibitory concentrations against clindamycin among methicillin-resistant Staphylococcus aureus isolates.
Indian J Med Microbiol 2012;30:165-9.
26. Rao GG. Should clindamycin be used in treatment of patients with infections caused by erythromycinresistant
staphylococci? J AntimicrobChemother 2000;45:715.
27. Siberry GK, Tekle T, Carroll K, Dick J. Failure of clindamycin treatment of methicillin-resistant
Staphylococcus aureus expressing inducible clindamycin resistance in vitro. Clin Infect Dis 2003;37:1257-
60.

Thank you for copying data from http://www.arastirmax.com