Buradasınız

Osteogenezde Fibroblast Büyüme Faktörleri (FBF) ve Kemik Morfogenetik Proteinlerin (KMP) Rolü

The Role of Fibroblast Growth Factors and Bone Morfogenetik Proteins in Osteogenesis

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Osteogenesis, which is known as the formation of bone tissue, occurs both in normal skeletal patterning during embrional period and in the recovery of bone fractures during adulthood. Although there are many factors involved in the mechanism of osteogenesis, in this study, we reviewed the effect of fibroblast growth factors and bone morphogenetic proteins, whose effects are further established through new studies novadays.
Abstract (Original Language): 
Kemik dokunun oluşması olarak bilinen osteogenez, hem embriyonal dönemde normal iskelet yapısının oluşmasında hem de yetişkin dönemde kemik kırıklarının iyileşmesinde meydana gelmektedir. Osteogenez mekanizmasında pek çok faktör görev alırken bu derlemede, günümüzde, etkileri her geçen gün yeni çalışmalar ile ortaya konulan fibroblast büyüme faktörlerinin ve kemik morfogenetik proteinlerin etkisi gözden geçirilmiştir.
135-140

REFERENCES

References: 

1. Müftüoğlu S, Kaymaz F, Atilla Pergin. Netter Temel Histoloji. 2009 Sayfa: 139-41
2. Horton WA. In vitro chondrogenesis in human chondrodysplasias. Am J Med Genet 1993;45:179-82.
3. Hakkı SS, Nohutçu RM. Basik Fibroblast Growth Factor (b-FGF) ve Dexamethasone (Dex)’un pre-osteoblastların (MC3T3-E1) proliferasyonu, total protein miktarı ve hücre morfolojisi üzerine etkisi Hacettepe Dişhekimliği Fakültesi Dergisi 2005;29:/4 42-50
4. Hakkı SS, Hakkı EE, Akkaya MS. The effects of basic-fibroblast growth factor(b-FGF) on periodontal ligament cells. J Dent Res 2000;79: 2065.
5. Çetin M, Tapan Y. b-FBF (Bazik Fibroblast Büyüme faktörü) ve formulasyonlarında yeni yaklaşımlar. Hacettepe Üniversitesi Eczacılık Fakültesi Dergisi 2004;24;2: 107-24.
6. Ornitz DM, Marie PJ. FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev 2002;16:1446–65.
7. Iseki S, Wilkie AO, Morriss-Kay. FGFr1 and FGFr2 have distinct differentiation- and proliferation-related roles in the developing mouse skull vault. Development 1999; 126:5611–620.
8. Shimoaka T, Ogasawara T, Yonamine A, et al. Regulation of osteoblast, chondrocyte, and osteoclast functions by fibroblast growth factor (FGF)-18 in comparison with FGF-2 and FGF-10. J Biol Chem 2002;277:7493–500.
9. Walsh S, Jefferiss CM, Stewart K, et al. IGF-I does not affect the proliferation or early osteogenic differentiation of human marrow stromal cells. Bone 2003;33:80–9.
10. Fakhry A, Ratisoontorn C, Vedhachalam C, et al. Effects of FBF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of KMP- 2 and noggin and enhancement of osteogenic potential. Bone 2005;36:254–66.
11. Noff D, Pitaru S, Savion N. Basic fibroblast growth factor enhances the capacity of bone marrow cells to form bone-like nodules in vitro. FEBS Lett 1989;250:619–21.
12. Pitaru S, Kotev-Emeth S, Noff D, et al. Effect of basic fibroblast growth factor on the growth and differentiation of adult stromal bone marrow cells: enhanced development of mineralized bone-like tissue in culture. J Bone Miner Res 1993;8:919–29.
13. Zhang X, Sobue T, Hurley MM. FGF-2 increases colony formation, PTH receptor, and IGF-1 mRNA in mouse marrow stromal cells. Biochem Biophys Res Commun 2002;290:526–31.
14. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 1997;89:747–54.
15. Ducy P, Starbuck M, Priemel M, et al. Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 1999;13:1025–36.
16. Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 1997;89:755–64.
17. Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 1997;89:765–71.
18. 18.Xiao G, Jiang D,Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast specific transcription factor, Cbfa1. J Biol Chem 2000;275:4453–59.
19. Kim HJ, Lee MH, Park HS, et al. Erk pathway and activator protein 1 play crucial roles in FGF2-stimulated premature cranial suture closure. Dev Dyn 2003;227:335–46.
20. Montero A, Okada Y, Tomita M, et al. Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation. J Clin Invest 2000;105:1085–93.
21. Debiais F, Debiais F, Lefèvre G, et al. Fibroblast growth factor-2 induces osteoblast survival through a phosphatidylinositol 3-kinase-dependent, -beta-catenin-independent signaling pathway. Exp Cell Res 2004;297:235–46.
22. Ohbayashi N, Shibayama M, Kurotaki Y, et al. FGF18 is required for normal cell proliferation and differentiation during osteogenesis and chondrogenesis. Genes Dev 2002;16: 870–9.
23. Noda M, Vogel R. Fibroblast growth efector enhances type beta 1 transforming growth factor gene expression in osteoblast-like cells. J Cell Biol 1989;109:2529–35.
24. Power RA, Iwaniec UT, Wronski TJ. Changes in gene expression associated with the bone anabolic effects of basic fibroblast growth factor in aged ovariectomized rats. Bone 2002; 31;143–8.
25. Globus RK, Patterson-Buckendahl P, GospodarowiczD. Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 1988;123: 98–105.
26. Tang KT, Tang KT, Capparelli C, et al. Acidic fibroblast growth factor inhibits osteoblast differentiation in vitro: altered expression of collagenase, cell growthrelated, and mineralization-associated genes. J Cell Biochem 1996;61: 152–66.
27. Song H, Kwon K, Lim S, et al. Transfection of mesenchymal stem cells with the FGF-2 gene improves their survival under hypoxic conditions. Mol Cells 2005;19: 402–7.
28. Zhou YX, Xu X, Chen L, et al. Pro250Arg substitution in mouse FGFR1 causes increased expression of Cbfa1 and premature fusion of calvarial sutures. Hum Mol Gene 2000;9:2001–8.
29. Yu K, Xu J, Liu Z, et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 2003; 130:3063–74.
30. Deng C, Wynshaw-Boris A, ZhouF, et al. Fibroblast growth factor receptor 3 is a negative regulator of bone growth. Cell 1996;84: 911–21.
31. Murakami S, Balmes G, McKinney S, et al. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the FGFR3-deficient mouse phenotype. Genes Dev 2004;18:290–5.
32. FunatoN, Ohtani K, Ohyama K, et al. Common regulation of growth arrest and differentiation of osteoblasts by helix-loophelix factors. Mol Cell Biol 2001;21:7416–28.
33. Valverde-Franco G, Valverde-Franco G, Liu H, et al. Defective bone mineralization and osteopenia in young adult FGFR3−/− mice. Hum Mol Genet 2004;13:271–84.
34. Chen L, Adar R, Yang X, et al. Gly369 Cys mutation in mouse FGFR3 causes achondroplasia by affecting both chondrogenesis and osteogenesis. J Clin Invest 1999;104:1517–25.
35. Cool S, Jackson R, Pincus P, et al. Fibroblast growth factor receptor 4 (FGFR4) expression in newborn murine calvaria and primary osteoblast cultures. Int J Dev Biol 2002; 46:519–23.
Yıldırım ve ark.
140
36. Burke D, Wilkes D, Blundell TL, et al. Fibroblast growth factor receptors: lessons from the genes. Trends Biochem Sci 1998;23:59–62.
37. Muenke M, Schell U. Fibroblast-growth-factor receptor mutations in human skeletal disorders. Trends Genet 1995;11:308–13.
38. Naski MC, Ornitz DM. FGF signaling in skeletal development. Front Biosci 1998;3:781–94.
39. Webster MK, Donoghue DJ.FGFR activation in skeletal disorders: too much of a good thing. Trends Genet 1997;13: 178–82.
40. Peters K, Ornitz D, Werner S, et al. Unique expression pattern of the FGF receptor 3 gene during mouse organogenesis. Dev Biol 1993;155:423–30.
41. Dursun H. Heterotropik Ossifikasyon. FTR Bil Der J PMR Sci 2006;9:69-73
42. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecular clones and activities. Science 1988;42:1528–34.
43. Kronenberg HM. Developmental regulation of the growth plate. Nature 2003;423:332–6.
44. Kawabata M, Miyazono K. Bone morphogenetic proteins. In: Canalis MDE (ed) skeletal growth factors. Lippincott Williams & Wilkins, Philadelphia, 2000; 269–90.
45. Miyazono K, Maeda S, Imamura T. KMP receptor signaling: transcriptional targets, regulation of signals, and signaling crosstalk. Cytokine Growth Factor Rev 2005;16:251–63.
46. Karsenty G. Bone morphogenetic proteins and skeletal and nonskeletal development. In: Canalis MDE (ed) skeletal growth factors. Lippincott Williams&Wilkins, Philadelphia 2000; 291–310.
47. Zhang H, Bradley A, at al. Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 1996;122:2977–86.
48. Winnier G, Blessing M, Labosky PA, et al. Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 1995;9:2105–16.
49. Daluiski A, Engstrand T, Bahamonde ME, et al. Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 2001;27:84–8.
50. Kingsley DM, Bland AE, Grubber JM, et al. The mouse short ear skeletal morphogenesis locus is associated with defects in a bone
morphogenetic member of the TGF beta superfamily. Cell 1992;71:399–10.
51. Solloway MJ, Dudley AT, Bikoff EK, et al. Mice lacking KMP6 function. Dev Genet 1998;22:321–39.
52. Luo G, Hofmann C, Bronckers AL, et al. KMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 1995;9:2808–20.
53. Minina E, Kresch C, Naski MC,et al. Interaction of FGF, Ihh/Pthlh, and KMP signaling integrates Chondrocyte proliferaiton and hypertrophic differantiation. Derv Cell 2002:3:439-49.
54. Lydia Didt-Koziel, Wuelling M, Vortkamp A. Kondrogenez ve osteogenezde büyüme faktörlerinin rolü. Current Opinion in Orthopaedics. Türkçe baskı. 2006;4:198-207.
55. Kugimiya F, Kawaguchi H, Kamekura S, et al. Involvement of endogenous bone morphogenetic protein (BMP)2 and BMP6 in bone formation. J Biol Chem 2005;280:35704–12.
56. Cuevas P, et al. Osteopromotion for cranioplasty: an experimental study in rats using acidic fibroblast growth factor Surg Neurol 1997;47:242–6.
57. McCracken M, Lemons JE, Zinn K. Analysis of Ti–6Al–4V implants placed with fibroblast growth factor 1 in rat tibiae. Int J Oral Maxillofac Implants 2001;16:495–502.
58. Nakamura T, et al. Stimulation of endosteal bone formation by systemic injections of recombinant basic fibroblast growth factor in rats. Endocrinology 1995;136: 1276–84.
59. Radomsky ML, Aufdemorte TB, Swain LD, et al. Novel formulation of fibroblast growth factor-2 in a hyaluronan gel accelerates fracture healing in nonhuman primates. J Orthop Res 1999;17:607–14.
60. Govender S, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Jt Surg Am 2002;84:2123–34.

Thank you for copying data from http://www.arastirmax.com