Buradasınız

Homosistein metabolizma bozuklukları ve vasküler hastalıklarla ilişkisi

Homocysteine metabolism disorders and their relationship with vascular diseases

Journal Name:

Publication Year:

Abstract (2. Language): 
Homocysteine is an aminoacid with that a sulfur-containing metabolite of methionine. Human plasma contains both reduced with sulfhydryl (homocysteine) and oxidized with disulphide (homocystine) forms of homocysteine. Oxidized forms of homocystein account for 98-99% of total homocysteine (tHcy). In the homocysteine metabolism, there are two major pathways. The first is remethylation back to methionine using vitamin B12 as cofactor. The second pathway is transsulfuration to cysteine using vitamin B6 as cofactor. These reactions reduce total homocysteine (tHcy) concentrations in cells and blood. Median fasting total homocysteine levels in adult males and pediatric populations are between 5-15 and 3.7-1 0.3 micromol/L, respectively. Increased plasma tHcy concentrations are found with methionine-rich diets, low vitamin B intake, male gender, increasing age, impaired renal function, and genetically determined defects of the enzymes involving in homocysteine metabolism. An inverse relation exists between plasma tHcy and circulating folate or vitamin B6 concentrations. Folic acid supplements of 0.5 mg/d can reduce tHcy levels by approximately 25%. In recent years, a number of case-control studies have established that hyperhomocysteinemia are a causal factor for coronary, cerebral, and peripheral vascular diseases. In this review, we analysed the inter relation between homocysteine and cardiovascular disease.
Abstract (Original Language): 
Homosistein, metiyoninin metaboliti olan sülfürlü bir aminoasittir. İnsan plazmasında, hem sülfürlü indirgenmiş (homosistein) hem de disülfidli oksidlenmiş (homosistin) formlarda bulunur. Homosisteinin okside formları plazma total homosisteininin %98-99'unu oluşturmaktadır. Homosistein metabolizmasında, iki major yol vardır; kofaktör olarak vitamin B12 kullanılarak metiyonine yeniden metillenebilir veya kofaktör olarak vitamin B6 kullanılarak sisteine dönüşebilir (transsülfürasyon). Bu reaksiyonlar, hücreler ve kandaki total homosistein (tHcy) konsantrasyonunu düşürür. Erişkin erkek ve pediatrik populasyonda, ortalama açlık total homosisteini sırasıyla 5¬15 ve 3.7-10.3 mikromol/L arasındadır. Metiyoninden zengin, vitamin B'den fakir dietle beslenen erkeklerde, yaşlılarda, böbrek fonksiyonu bozuk olanlarda ve homosistein metabolizmasına katılan enzimlerde genetik defekt olanlarda plazma tHcy konsantrasyonu artmaktadır. Plazma tHcy'i ile dolaşımdaki folat ve vitamin B6 konsantrasyonları arasında zıt bir ilişki vardır. Günlük diete 0.5 mg folik asit eklenerek tHcy seviyeleri %25 azaltılabilmektedir. Son yıllarda yapılan vaka-kontrol çalışmalarında hiperhomosisteineminin koroner, serebral ve periferik vasküler hastalıklar için kozal bir faktör olduğu tespit edilmiştir. Bu derlemede, homosistein, homosistinüri ve kardiyovasküler hastalıklar arasındaki ilişkiler incelenmiştir.
149-157

REFERENCES

References: 

1. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. Am J Pathol 1969;56:111-28.
2. Eikelboom JW, Lonn E, Genest J, Jr., et al. Homocyst(e)ine and cardiovascular disease: a critical review of the epidemiologic evidence. Ann Intern Med 1999;131:363-75.
3. Boushey CJ, Beresford SA, Omenn GS, Motulsky AG. A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing
folic acid intakes. JAMA 1995;274:1049-57.
4. Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992;268:877-81.
5. Wald NJ, Watt HC, Law MR, et al. Homocysteine and ischemic heart disease: results of a prospective study with implications regarding prevention. Arch Intern Med 1998; 158:862¬7.
6. Arnesen E, Refsum H, Bonaa KH, et al. Serum total homocysteine and coronary heart disease. Int J Epidemiol 1995;24:704-9.
7. Ubbink JB, Fehily AM, Pickering J, et al. Homocysteine and ischaemic heart disease in the
Caerphilly cohort. Atherosclerosis 1998;140:349-56.
8. Alfthan G, Pekkanen J, Jauhiainen M, et al. Relation of serum homocysteine and lipoprotein(a) concentrations to atherosclerotic disease in a prospective Finnish population based study. Atherosclerosis 1994;106:9-19.
9. Evans RW, Shaten BJ, Hempel JD, et al. Homocyst(e)ine and risk of cardiovascular disease in the Multiple Risk Factor Intervention Trial. Arterioscler Thromb Vasc Biol
1997;17:1947-53.
10. Folsom AR, Nieto FJ, McGovern PG, et al. Prospective study of coronary heart disease incidence in relation to fasting total homocysteine, related genetic polymorphisms, and B vitamins: the Atherosclerosis Risk in Communities (ARIC) study. Circulation
1998;98:204-10.
11. Still RA, McDowell IF. ACP Broadsheet No 152: March 1998. Clinical implications of
plasma homocysteine measurement in cardiovascular disease. J Clin Pathol 1998;51:183-8.
12. Frosst P, Blom HJ, Milos R, et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995;10:111-3.
13. Brattstrom L, Wilcken DE, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation 1998;98:2520-6.
14. Sardharwalla IB, Fowler B, Robins AJ, Komrower GM. Detection of heterozygotes for homocystinuria. Study of sulphur-containing amino acids in plasma and urine after L-
methionine loading. Arch Dis Child 1974;49:553-9.
15. Selhub J, Jacques PF, Wilson PW, et al. Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 1993;270:2693-8.
16. Refsum H, Ueland PM, Nygard O, Vollset SE. Homocysteine and cardiovascular disease.
Annu Rev Med 1998;49:31-62.
17. Jacobsen DW. Homocysteine and vitamins in cardiovascular disease. Clin Chem
1998;44:1833-43.
18. Doshi SN, Goodfellow J, Lewis MJ, McDowell IF. Homocysteine and endothelial
function. Cardiovasc Res 1999;42:578-82.
19. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet 1999;354:407-13.
156
Homosistein metabolizma bozuklukları ve vasküler hastalıklarla ilişkisi
20. Apeland T, Mansoor MA, Strandjord RE, Kristensen O. Homocysteine concentrations and methionine loading in patients on antiepileptic drugs [In Process Citation]. Acta Neurol Scand 2000;101:217-23.
21. Clarke R, Daly L, Robinson K, et al. Hyperhomocysteinemia: an independent risk factor for vascular disease. N Engl J Med 1991;324:1149-55.
22. Graham IM, Daly LE, Refsum HM, et al. Plasma homocysteine as a risk factor for vascular disease. The European Concerted Action Project. JAMA 1997;277:1775-81.
23. Wilcken DE, Reddy SG, Gupta VJ. Homocysteinemia, ischemic heart disease, and the carrier state for homocystinuria. Metabolism 1983;32:363-70.
24. Mudd SH, Havlik R, Levy HL, et al. A study of cardiovascular risk in heterozygotes for homocystinuria. Am J Hum Genet 1981;33:883-93.
25. Dunn J, Title LM, Bata I, et al. Relation of a common mutation in methylenetetrahydrofolate reductase to plasma homocysteine and early onset coronary artery disease. Clin Biochem 1998;31:95-100.
26. Refsum H, Ueland PM. Recent data are not in conflict with homocysteine as a cardiovascular risk factor. Curr Opin Lipidol 1998;9:533-9.
27. Mudd SH, Skovby F, Levy HL, et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 1985;37:1-31.
28. Bellamy MF, McDowell IF. Putative mechanisms for vascular damage by homocysteine. J
Inherit Metab Dis 1997;20:307-15.
29. Tsai JC, Perrella MA, Yoshizumi M, et al. Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A
1994;91:6369-73.
30. Tang L, Mamotte CD, Van Bockxmeer FM, Taylor RR. The effect of homocysteine on DNA synthesis in cultured human vascular smooth muscle. Atherosclerosis
1998;136:169-73.
31. Chen C, Halkos ME, Surowiec SM, et al. Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res
2000;88:26-33.
32. Stamler JS, Osborne JA, Jaraki O, et al. Adverse vascular effects of homocysteine are modulated by endothelium-derived relaxing factor and related oxides of nitrogen. J Clin
Invest 1993;91:308-18.
33. Chao CL, Kuo TL, Lee YT. Effects of methionine-induced hyperhomocysteinemia on endothelium-dependent vasodilation and oxidative status in healthy adults. Circulation
2000;101:485-90.
34. Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature
1993;362:801-9.
35. Woo KS, Sanderson JE, Sun YY, et al. Hyperhomocyst(e)inemia is a risk factor for arterial endothelial dysfunction in humans. Circulation 2000;101:E116.
36. Tawakol A, Omland T, Gerhard M, et al. Hyperhomocyst(e)inemia is associated with impaired endothelium-dependent vasodilation in humans. Circulation 1997;95:1119-21.
37. Celermajer DS, Sorensen K, Ryalls M, et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 1993;22:854-8.
38. Bellamy MF, McDowell IF, Ramsey MW, et al. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation
1998;98:1848-52.
39. Chambers JC, McGregor A, Jean-Marie J, Kooner JS. Acute hyperhomocysteinaemia and endothelial dysfunction. Lancet 1998;351:36-7.
40. Hanratty CG, McAuley DF, McGurk C, et al. Homocysteine and endothelial vascular
function. Lancet 1998;351:1288-9.
41. Lambert J, van den BM, Steyn M, et al. Familial hyperhomocysteinaemia and endothelium-dependent vasodilatation and arterial distensibility of large arteries.
Cardiovasc Res 1999;42:743-51.
42. Celermajer DS, Sorensen KE, Bull C, et al. Endothelium-dependent dilation in the systemic arteries of asymptomatic subjects relates to coronary risk factors and their
interaction. J Am Coll Cardiol 1994;24:1468-74.
43. Selhub J, Miller JW. The pathogenesis of homocysteinemia: interruption of the coordinate regulation by S-adenosylmethionine of the remethylation and transsulfuration of
homocysteine. Am J Clin Nutr 1992;55:131-8.
44. Guttormsen AB, Schneede J, Fiskerstrand T, et al. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy
human subjects. J Nutr 1994;124:1934-41.
45. Adunsky A, Weitzman A, Fleissig Y, et al. The relation of plasma total homocysteine levels to prevalent cardiovascular disease in older patients with ischemic stroke. Aging
(Milano ) 2000;12:48-52.
46. Al Obaidi MK, Philippou H, Stubbs PJ, et al. Relationships between homocysteine, factor VIIa, and thrombin generation in acute coronary syndromes. Circulation 2000;101:372-7.
47. Bunout D, Garrido A, Suazo M, et al. Effects of supplementation with folic acid and antioxidant vitamins on homocysteine levels and LDL oxidation in coronary patients.
Nutrition 2000;16:107-10.
48. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists' Collaboration. BMJ 1998;316:894-8.
49. Andreotti F, Burzotta F, Manzoli A, Robinson K. Homocysteine and risk of cardiovascular disease. J Thromb Thrombolysis 2000;9:13-21.

Thank you for copying data from http://www.arastirmax.com