[1] T¨orn, A., Global optimization. SpringerVerlag
(1989).
[2] Price, K., Storn, R.M., Lampinen, J.A., Differential
evolution: a practical approach to
global optimization. Springer-Verlag, Berlin
(2005).
[3] Tu, T.V., Sano, K., Genetic algorithm for
optimization in adaptive bus signal priority
control. An International Journal of Optimization
and Control: Theories and Applications
(IJOCTA), 3(1), 35–43 (2012).
[4] Luenberger, D.G., Ye, Y., Linear and nonlinear
programming. Springer, New York
(2008).
[5] Dennis, J.E., Schnabel, R.B., Numerical
methods for unconstrained optimization and
nonlinear equations. SIAM (1987).
[6] More, J.J., Thuente, D.J., Line search algorithms
with guaranteed sufficient decrease.
ACM Transactions on Mathematical Software,
20(3), 286–307 (1994).
[7] Mohan, C., Shanker, K., A controlled random
search technique for global optimization
using quadratic approximation. Asia-Pacific
Journal of Operational Research, 11(1), 93–
101 (1994).
[8] Pant, M., Thangaraj, R., Singh, V.P., A new
differential evolution algorithm for solving
global optimization problems. International
Conference on Advanced Computer Control
(ICACC’09), 388-392 (2009)
[9] Storn, R., Price, K., Differential evolution a
simple and efficient heuristic for global optimization
over continuous spaces. Journal of
Global Optimization, 11(4), 341-359 (1997).
[10] Montgomery, J., Chen, S., An analysis of
the operation of differential evolution at high
and low crossover rates. IEEE Congress on
Evolutionary Computation (CEC’2010), 1-8
(2010).
[11] Onwubolu, G., Davendra, D., Scheduling
flow shops using differential evolution algorithm.
European Journal of Operational Research,
171(2), 674–692 (2006).
[12] S¸ahin, ˙I., Random Lines: a novel population
set-based evolutionary global optimization
algorithm. Genetic Programming vol.
6621, 97-107, Springer-Verlag, Berlin (2011).
[13] Zielinski, K., Weitkemper, P., Laur, R.,
Kammeyer, K.-D., Examination of stopping
criteria for differential evolution based on
a power allocation problem. 10th International
Conference on Optimization of Electrical
and Electronic Equipment, Brasov, Romania
(2006).
[14] Rahnamayan, S., Tizhoosh, H.R., Salama,
M.M.A., Opposition-based Differential Evolution.
IEEE Transactions on Evolutionary
Computation, 12(1), 64-79 (2008).
[15] More, J.J., Garbow, B.S., Hillstrom, K.E.,
Testing unconstrained optimization software.
Acm Transactions on Mathematical Software,
7(1), 17-41 (1981).
[16] Aluffipentini, F., Parisi, V., Zirilli,
F., Global optimization and stochastic
differential-equations. Journal of Optimization
Theory and Applications, 47(1), 1-16
(1985).
[17] Ali, M.M., Khompatraporn, C., Zabinsky,
Z.B., A numerical evaluation of several stochastic
algorithms on selected continuous
global optimization test problems. Journal of
Global Optimization, 31(4), 635-672 (2005).
[18] Pierre, D.A., Optimization theory with applications.
Courier Dover Publications, Mineola(1987).
[19] Clerc, M., Kennedy, J., The particle swarm
- explosion, stability, and convergence in
a multidimensional complex space. IEEE
Transactions on Evolutionary Computation,
6(1), 58-73 (2002).
[20] Ali, M.M., Kaelo, P., Improved particle
swarm algorithms for global optimization.
Applied Mathematics and Computation,
196(2), 578-593 (2008).
[21] Ali, M.M., T¨orn, A., Population set-based
global optimization algorithms: some modifications
and numerical studies. Computers
and Operations Research, 31(10), 1703-1725
(2004).
[22] Yao, X., Liu, Y., Lin, G., Evolutionary programming
made faster. IEEE Transactions
on Evolutionary Computation, 3(2), 82 -102
(1999).
Thank you for copying data from http://www.arastirmax.com