Buradasınız

PEGYLATION – A REVIEW

Journal Name:

Publication Year:

Abstract (2. Language): 
The paper discusses general problems in using PEG for conjugation to high or low molecular weight molecules. Poly (ethylene glycol) (PEG) is a highly investigated polymer for the covalent modification of biological macromolecules and surfaces for many pharmaceutical and biotechnical applications. PEGylation is the process of covalent attachment of polyethylene glycol (PEG) polymer chains to another molecule, normally a drug or therapeutic protein. Advantages of PEGylation (i.e. the covalent attachment of PEG) of peptides and proteins are numerous and include shielding of antigenic, shielding receptor by the reticuloendothelial system (RES), and preventing recognition and degradation by photolytic enzymes. PEG conjugation also increases the apparent size of the polypeptide, thus reducing the renal filtration and altering bio distribution. An important aspect of PEGylation is the incorporation of various PEG functional groups that are used to attach the PEG to the peptide or protein. In this pap we review PEG chemistry and methods of preparation with a particular focus on new (second derivatives, reversible conjugation and PEG structures. ISSN: 2277-8713 2 maceutical G) receptor-mediated uptake parent paper, second-generation) PEG
FULL TEXT (PDF): 
68-89

REFERENCES

References: 

1. G. Walsh: Biopharmaceutical
benchmarks, Nat. Biotechnol. 2000: 18;
831–833.
2. C. Mateo, J. Lombardero, E. Moreno, A.
Morales, G. Bombino, J. Coloma, L.
Wims, S.L. Morrison and R. Perez:
Removal of amphipathic epitopes from
genetically engineered antibodies:
production of modified immuno
globulins with reduced immunogenicity,
Hybridoma. 2000; 19: 463–471.
3. J.B. Lyczak and S.L. Morrison: Biological
and pharmacokinetic properties of a
novel immunoglobulin-CD4 fusion
protein, Arch. Virol. 1994; 139: 189–
196.
4. S. Syed, P.D. Schuyler, M. Kulczycky,
W.P. Sheffield, Potent antithrombin
activity and delayed clearance from the
circula- tion characterize recombinant
hirudin genetically fused to albumin,
Blood. 1997; 89: 3243–3252.
5. S. Cohen, T. Yoshioka, M. Lucarelli, L.H.
Hwang and R. Langer: Controlled
delivery systems for proteins based on
poly(lactic / glycolic acid) microspheres,
Pharm. Res. 1991; 8: 713–720.
6. A. Abuchowski, J.R. McCoy, N.C. Palczuk,
T. van Es and F.F. Davis: Effect of
covalent attachment of polyethylene
glycol on immunogenicity and
circulating life of bovine livercatalase, J.
Biol. Chem. 1977; 252: 3582–3586.
7. J.M. Harris: Polyethylene Glycol
Chemistry, Biotechni-cal and Biomedical
Applications, Plenum, New York, 1992:
582-906.
8. J.M. Harris: Synthesis of polyethylene
glycol derivatives, J. Macromol. Sci. Rev.
Macromol. Chem. Phys. 1985; 25: 325–
373.
9. S. Zalipsky: Chemistry of polyethylene
glycol conjugates with biologically active
molecules, Adv. Drug Delivery Rev.
1995; 16: 157–182.
10. F.M. Veronese: Peptide and protein
PEGylation: a review of problems and
solutions, Biomaterials. 2001; 22: 405–
417.
11. G. Hooftman, S. Herman and E. Schacht:
Review: Poly (ethylene glycol) s with
reactive endgroups. II. Practical
consideration for the preparation of
protein–PEG conjugates, J.
Bioact.Compat. Polym. 1996; 11: 135–
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
159.
12. M.D. Bentley, J.M. Harris and A.
Kozlowski: Heterobifunctional
poly(ethylene glycol) derivatives and
methods for their preparation, P.C.T.
US99 / 23536 (1999)85-96.
13. J.M. Harris and A. Kozlowski:
Polyethylene glycol and related
polymers monosubstituted with
propionic or butanoic acids and
functional derivatives thereof for
biotechnical applications, US Patent
5,672,662 (1997) 266-258.
14. Y. Akiyama, H. Otsuka, Y. Nagasaki, M.
Kato and K. Katoaka: Selective synthesis
of heterobifunctional poly(ethylene
glycol) derivatives containing both
mercapto and acetal termi- nals,
Bioconjug. Chem. 2000; 11: 947–950.
15. A. Polson: A theory for the displacement
of proteins and viruses with
polyethylene glycol, Prep. Biochem.
1977; 7: 129–154.
16. W.R. Gombotz, W. Guanghui, T.A.
Horbett and A.S. Hoffman: Protein
adsorption to and elution from
polyether surfaces, Biomaterials. 2009;
22: 405–417.
17. A. Abuchowski, T. van Es, N.C. Palczuk
and F. F Davis: Alteration of
immunological properties of bovine
serum albumin by covalent attachment
of polyethylene glycol, J.Biol. Chem.
1977; 252: 3578–3581.
18. P.K. Working, M.S. Newman and J.
Johnson: Safety of poly(ethylene glycol)
and poly(ethylene glycol) derivatives, in:
J.M. Harris, S. Zalipsky (Eds.),
Poly(ethylene glycol) Chemistry and
Biological Applications, ACS Books,
Washington, DC, 1997: 45–57.
19. A.W. Richter, E. Akerblom, Antibodies
against polyethylene glycol produced in
animals by immunization with mono
methoxy polyethylene glycol modified
proteins, Int. Arch. Allergy Appl.
Immunol. 1983; 70: 124–131.
20. Trainer PJ: Treatment of acromegaly
with the growth hormone-receptor
antagonist pegvisomant. N. Engl. J. Med.
2000; 342: 1171–1177
21. A.W. Richter and E. Akerblom:
Polyethylene glycol reactive antibodies
in man: titer distribution in allergic
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
patients treated with mono methoxy
polyethylene glycol modified allergens
or placebo, and in healthy blood donors,
Int. Arch. Allergy Appl. Immunol. 1984;
74: 36–39.
22. T.L. Cheng, P.Y. Wu, M.F. Wu, J.W.
Chern and S.R. Rofer: Accelerated
clearance of polyethylene glycol-modied
proteins by anti-polyethylene glycol
IgM, Bioconjug. Chem. 1999; 10: 520–
528.
23. R. Clark, K. Olson, G. Fuh, M. Marian, D.
Mortensen, G Teshima, S. Chang, H.
Chu, V. Mukku, E. Canova-Davis, T.
Somers, M. Cronin, M. Winkler and J.A.
Wells: Long-acting growth hormones
produced by conjugation with
polyethylene glycol, J. Biol. Chem. 1996;
271: 21969–21977.
24. S. Zalipsky and C. Lee: Use of
functionalized poly (ethylene glycol)s for
modification of polypeptides, in: J.M.
Harris, S.Zalipsky (Eds.), Polyethylene
Glycol Chemistry, Biotechni-cal and
Biomedical Applications, Plenum, New
York, 1992: 347–370.
25. A. Matsushima, H. Nishimura, Y.
Ashihara, Y. Yakata and Y. Inada:
Modification of E. Coli asparaginase
with 2,4-bis(o-methoxypolyethylene
glycol)-6-chloro-s-triazine
(activatedPEG2); disappearance of
binding ability towards anti-serumand
retention of enzymatic activity, Chem.
Lett. 1980: 773–776.
26. G.E. Francis, D. Fisher, C. Delgado, F.
Malik, A. Gardiner and D. Neale:
PEGylation of cytokines and other
therapeuticproteins apeptides: the
importance of biological optimization of
coupling techniques, Int. J.
Hematol.1998; 68: 1–18.
27. Electrophilic polyethylene oxides for the
modification of polysaccharides,
polypeptides (proteins) and surfaces, US
Patent 5,650,234 (1997) Shearwater
Corporation Catolog, 2001: 65-77.
28. S. Lee and C. McNemarL Substantially
pure histidine-linked protein polymer
conjugates, US Patent 5,985,263.
1999;:254-269.
29. C.O. Beauchamp, S.L. Gonias, D.P.
Menapace and S.V. Pizzo: A new
procedure for the synthesis of
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
polyethylene glycol- protein adducts,
effects on function, receptor recognition
and clearance of superoxide dismutase,
lactoferrin and a2-macroglobulin, Anal.
Biochem. 1983; 131: 25–33.
30. A. Abuchowski, G.M. Kazo, C.R.
Verhoest et al., Cance therapy with
chemically modified enzymes. I.
Antitumor properties of polyethylene
glycol-asparaginase conjugates,Cancer
Biochem. Biophys. 1984; 7: 175–186.
31. M.C. Carter, M.E. Meyerhoff, Instability
of succinyl ester linkages in O29-
monosuccinyl cyclic AMP-protein
conjugates at neutral pH, J. Immunol.
Methods. 1985; 81: 245–257.
32. Scott, M.D. and Chen A.M: beyond the
red cell: pegylation of other blood cells
and tissues. Transfus. Clin. Biol.2011:
40–46.
33. J.M. Harris and R.M. Herati: Preparation
and use of polyethylene glycol
propionaldehyde, US Patent 5,252,714.
1993: 99-125.
34. O.B. Kinstler, N.E. Gabriel, C.E. Farrar,
R.B. DePrince, N-terminally chemically
modified protein compositions and
methods, US Patent 5,985,265
(1999)78-90.
35. C.K. Edwards: PEGylated recombinant
human soluble tumor necrosis factor
receptor type I (rHu-sTNF-RI): A novel
high-affinity TNF receptor designed for
chronic infiammatory diseases, Ann.
Rheum. Dis. 1999; 58: 173–181.
36. M.D. Bentley and J.M. Harris:
Poly(ethylene glycol) aldehyde hydrates
and related polymers and applications
in modifying US Patent 5,990,237. 1999;
237: 55-64.
37. S. Zalipsky and G. Barany: Preparation of
polyethylene glycol derivatives with two
different functional groups at the
termini, Polym. Preprints. 1986; 27: 1–2.
38. S. Zalipsky and G. Barany: Facile
synthesis of a-hydroxy-v
carboxymethylpolyethylene oxide, J.
Bioact. Compat. Polym. 1990; 5: 227–
231.
39. R.J. Goodson and N.V. Katre: Sitedirected
pegylation of recombinant
interleukin-2 at its glycosylation site,
Biotechnology. 1990: 343–346.
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
40. T.P. Kogan: The synthesis of substituted
methoxy-poly(ethylene glycol)
derivatives suitable for selective protein
modification, Synth. Commun. 1992; 22:
2417–2424.
41. M. Morpurgo, F.M. Veronese, D.
Kachensky and J.M. Harris: Preparation
and characterization of poly(ethylene
glycol)vinyl sulfone, Bioconjug. Chem.
1996; 7: 363–368.
42. C. Woghiren, B. Sharma, S. Stein,
Protected thiol-polyethylene glycol: a
new activated polymer for reversible
protein modification, Bioconjug. Chem.
1993; 4: 314–318.
43. R.J. Goodson, N.V. Katre, Site-directed
pegylation of recombinant interleukin-2
at its glycosylation site,Biotechnology.
1990; 8: 343–346.
44. T.P. Kogan: The synthesis of substituted
methoxy-poly (ethylene glycol)
derivatives suitable for selective protein
modification, Synth. Commun. 1992; 22:
2417–2424.
45. M. Morpurgo, F.M. Veronese, D.
Kachensky and J.M. Harris: Preparation
and characterization of poly (ethylene
glycol) vinyl sulfone, Bioconjug. Chem.
1996; 7: 363–368.
46. C. Woghiren, B. Sharma, S. Stein,
Protected thiol-poly ethylene glycol: a
new activated polymer for reversible
protein modification, Bioconjug. Chem.
1993; 4: 314–318.
47. N. El Tayar, M.J. Roberts, J.M. Harris, W.
Sawlivich, Polyol IFN-b conjugates,
WO99 / 55377. 1999: 25-33.
48. M. Karpusas, M. Nolte, C.B. Benton, W.
Meier, W.N. Lipscomb and S. Goelz: The
crystal structure of human interferon
beta at 2.2-A resolution, Proc. Natl.
Acad. Sci. USA. 1997; 94: 11813–11818.
49. S. Zalipsky and S. Menon-Rudolph:
Hydrazide derivatives of poly(ethylene
glycol) and their bioconjugates, in:
J.M.Harris, S. Zalipsky (Eds.),
Poly(ethylene glycol) Chemistry and
Biological Applications, ACS Books,
Washington, DC,1997: 318–340.
50. H.F. Gaertner and R.E. Offord: Sitespecific
attachment of functionalized
poly (ethylene glycol) to the amino
terminus of proteins, Bioconjug. Chem.
1996; 7: 38–44.
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
51. P. Bailon, A. Palleroni, C.A. Schaffer, C.L.
Spence, W.J. Fung, J.E. Porter, G.K.
Erlich, W. Pen, Z.X. Xu, M.W. Modi, A.
Farid, W. Berthold, M. Graves, Rational
design of a potent, long-lasting form of
interferon: A 40 kDa branched
polyethylene glycol-conjugated
interferon a-2a for the treatment of
hepatitis C, Bioconjug. Chem. 2001;
12:195–202.
52. J.M. Harris, A. Kozlowski, Improvements
in protein PEGylation: pegylated
interferons for treatment of hepatitis C,
J. Controlled Release. 2001; 72: 217–
224.
53. P. Glue, R. Rouzier-Panis, C. Raffanel et
al., PEG-interferon a2b:
pharmacokinetics, pharmacodynamics,
safety and preliminary efficacy data,
Hepatology. 1999; 30: 189-205.
54. N.E. Algranati, S. Sy and M. Modi: A
branched methoxy 40 kDa
polyethyleneglycol (PEG) moiety
optimizes the pharmacokinetics (PK) of
PEG-interferon a2a (PEG-IFN) and may
explain its enhanced efficacy in chronic
hepatitis C(CHC), Hepatology 40
(Suppl.). 1999: 190-192.
55. M.J. Roberts and J.M. Harris:
Attachment of degradable
poly(ethylene glycol) to proteins has the
potential to increase therapeutic
efficacy, J. Pharm. Sci. 1998; 87: 1440–
1445.
56. A.J. Garman and S.B. Kalindjian: The
preparation and properties of novel
reversible polymer– protein conjugates,
FEBS Lett. 1987; 223: 361–365.
57. X. Zhao and M.D. Bentley: A
hydrolyzable linkage for PEG-proteins,
in: Ninth International Symposium on
Recent Advances in Drug Delivery
System, 1999: 144–146.
58. S. Lee, R.B. Greenwald, J. McGuire, K.
Yang and C. Shi: Drug delivery systems
employing 1,6-elimination: Releasable
poly(ethylene glycol) conjugates of
proteins, Bioconjug.Chem. 2001; 12:
163–169.
59. S. Zalipsky, M. Qazen, J.A. Walker II, N.
Mullah, Y.P. Quinn and S.K. Huang: New
detachable poly(ethylene glycol)
conjugates: Cysteine-cleavable
lipopolymers regenerating natural
phospholipid, diacyl
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
phosphatidylethanolamine,Bioconjug.
Chem. 1999; 10: 703–707.
60. M.D. Bentley, J.M. Harris and A.
Kozlowski: Heterobifunctional
poly(ethylene glycol) derivatives and
methods for their preparation,
WO126692A1. 2001: 55-85.
61. M. Yokoyama, T. Okano, Y. Sakurai, A.
Kikuchi, N. Ohsako,Y. Nagasaki and K.
Kataoka: Synthesis of poly(ethylene
oxide) with heterobifunctional reactive
groups at its terminals by an anionic
initiator, Bioconjug. Chem. 1992; 3:
275–276.
62. S. Cammas, Y. Nagasaki and K. Kataoka:
Heterobifunctional poly(ethylene
oxide): synthesis of alpha-methoxyomega-
amino and alpha-hydroxyomega-
amino PEOs with the same
molecular weights, Bioconjug. Chem.
1995; 6: 226–230.
63. Y. Nagasaki, T. Kutsuna, M. Iijima, M.
Kato, K. Kataoka, S.Kitano and Y.
Kadoma: Formyl-ended
heterobifunctional poly-(ethylene
oxide): synthesis of poly (ethylene
oxide) with a formyl group at one end
and a hydroxyl group at the other end,
Bioconjug. Chem. 1995; 6: 231–233.
64. N. Yamasaki, A. Matsuo and H. Isobe:
Novel polyethylene glycol derivatives
for modification of proteins, Agric.
Biol.Chem. 1988; 52: 2125–2127.
65. C. Monfardini, O. Schiavon, P. Caliceti,
M. Morpurgo, J.M.Harris and F.M.
Veronese: A branched
monomethoxypoly(ethylene glycol) for
protein modification, Bioconjug. Chem.
1995; 6: 62–69.
66. F.M. Veronese, P. Caliceti and O.
Schiavon: Branched and linear poly
(ethylene glycol): influence of the
polymer structure on enzymological,
pharmacokinetic and immunological
properties of protein conjugates, J.
Bioact. Compat. Polym. 1997; 12: 196–
207.
67. Kratz F: Drug-polymer conjugates
containing acid-cleavable bonds carrier
system.Crit. Rev. Ther. Drug Carrier Syst.
1999; 16: 245–288.
68. F.H. Arnold and G.E. Wuenschell:
Immobilized metal aqueous two-phase
extraction and precipitation, US Patent
Review Article ISSN: 2277-8713
Rushabh Shah, IJPRBS, 2012; Volume 1(5): IJPRBS
Available Online At www.ijprbs.com
5,283,339. 1994.
69. A.J. Martinez, A. Pendri, R.B. Greenwald
and Y.H. Choe: Terminally-branched
polymeric linkers and polymeric
conjugates containing the same, US
Patent 6,153,655. 2000: 222-254.

Thank you for copying data from http://www.arastirmax.com