Buradasınız

MICROSATELLITE MARKERS: A BREAKTHROUGH IN EVOLUTIONARY BIOLOGY

Journal Name:

Publication Year:

Abstract (2. Language): 
Repetitive sequences of DNA have explored a large amount of genetic data within the living organism. By the help of these repetitive sequences of DNA it is easy to study the genetic diversity within the organisms. Molecular Markers are the powerful tools for analysis of genetic biodiversity. Microsatellites are Simple Sequence Repeats of 1-6 nucleotides. Microsatellites are abundant throughout the genome and show high level of polymorphism. They are found to have a great potential to provide genetic information within an organism, diagnosis of disease of genetic origin and in evolutionary studies. In this review we tried to summarize the every aspect of microsatellites including features, application and drawbacks.
385
409

REFERENCES

References: 

1. Abdelkrim J, Robertson BC, Stanton JAL & Gemmell NJ. Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. BioTechniques 2009; 185-192.
ISSN: 2277-8713
IJPRBS
2. Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences. Plant Cell Rep. 2008; 27:617.
3. Albani MC, Wilkinson MJ. Inter simple sequence repeat polymerase chain reaction for the detection of somaclonal variation. Plant Breeding 1998; 117:573-575.
4. Ali ML, McClung AM, Jia MH, Kimball JA, McCouch SR & Eizenga GC. A Rice Diversity Panel Evaluated for Genetic and Agro-Morphological Diversity 2011.
5. Altschul SF, Gish W, Miller W Myers, EW & Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology 1990;
215(3),403-410.
6. Anmarkrud JA, Kleven O, Bachmann L & Lifjeld JT. Microsatellite evolution: Mutations, sequence variation, and homoplasy in the avian microsatellite locus HrU10. BMC Evolutionary Biology 2008;
8:138.
7. Apotikar DB, Venkateswarlu D, Ghorade RB, Wadaskar RM, Patil JV & Kulwal PL. Mapping of shoot fly tolerance loci in sorghum using SSR markers. Journal of
Genetics 2011; 90:59-66.
8. Arthofer W, Steiner FM & Schlick-
Steiner BC. Rapid and cost-effective screening of newly identified microsatellite loci by high-resolution melting analysis. Molecular Genetics and Genomics 2011;
286(3-4): 225-235.
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
9. Baranski M, Moen T & Vage DI. Mapping of quantitative trait loci for flesh colour and growth traits in Atlantic salmon (Salmo salar). Genetics Selection Evolution 2010;
42:17.
10. Beatty GE & Provan J. Comparative phylogeography of two related plant species with overlapping ranges in Europe, and the potential effects of climate change on their intraspecific genetic diversity. BMC Evolutionary Biology 2011; 11:29.
11. Becker J, Vos P, Kuiper M, Salamini F, Heun M. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet.
1995; 249:65-73.
12. Becquet C, Patterson N, Stone AC, Przeworski M & Reich D. Genetic Structure of Chimpanzee Populations. PLoS Genetics
2007; 3(4):617-626.
13. Bhargava A & Fuentes FF. Mutational Dynamics of Microsatellites. Molecular Biotechnology 2010; 44(3):250-266.
14. Blair MW, Panaud O, McCouch SR. Inter-simple sequence repeats (ISSR) amplification for analysis of microsatellite motif frequency and fingerprinting in rice (Oryza sativa L.). Theor. Appl .Genet. 1999; 98:780-792.
15. Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C & Taberlet P. How to track and assess genotyping errors in population genetics studies. Molecular Ecology 2004; 13(11):3261-3273.
16. Brohele J, Ellegren H. Microsatellite evolution: polarity of substitution within repeats and neutrality of flanking sequences. Proceedings of Royal Society of London B. Biological Sciences 1999; 266:825 - 833.
17. Chistiakov DA, Hellemans B & Volckaert FAM. Microsatellites and their genomic distribution, evolution, function and applications: A review with special reference to fish genetics. Aquaculture
2006; 255:1-29.
18. Colautti RI, Manca M & Viljanen M. Invasion genetics of the Eurasian spiny waterflea: evidence for bottlenecks and gene flow using microsattelites. Molecular Ecology 2005; 14(7):1869-1879.
19. Dawson DA, Horsburgh GJ, Küpper C, Stewart IR, Ball AD, Durrant KL, Hansson B, Bacon I, Bird S, Klein A, Krupa AP, Lee JW, Martfn-Gâlvez D, Simeoni M, Smith G, Spurgin LG & Burke T. New methods to identify conserved microsatellite loci and develop primer sets of high cross-species utility - as demonstrated for birds. Molecular Ecology Resources 2010;
10(3):475-494.
20. Ellegren H. Microsatellites: simple sequences with complex evolution. Nature Reviews Genetics 2004; 5:435-445.
21. Estoup A, Jarne P & Cornuet JM. Homoplasy and mutation model at microsatellite loci and their consequences for population genetics analysis. Molecular Ecology 2002; 11(9):1591-1604.
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
22. Excoffier L & Heckel G. Computer programs for population genetics data analysis: a survival guide. Nature Reviews
Genetics 2006; 7(10):745-758.
23. Faria AD, Mamani EMC, Pappas MR, Pappas Jr GJ & Gratapaglia D. A Selected Set of EST-Derived Microsatellites, Polymorphic and Transferable across 6 Species of Eucalyptus. Journal of Heredity 2010;
101(4):512-520.
24. Fitzpatrick S, Feliciangeli D, Sanchez-Martin M, Monteiro FA & Miles MA. Molecular genetics reveal that silvatic Rhodnius prolixus do colonise rural houses. PLoS Neglected Tropical Diseases 2008;
2(4):1-16.
25. Genton BJ, Shykoff JA & Giraud T. High
genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Molecular Ecology 2005;
14(14):4275-4285.
26. Goldstein DB, Clark AG. Microsatellite variation in North American populations of Drosophila melanogaster. Nucleic Acids
Research 1995; 23:3882- 3886.
27. Goldstein DB, Linares AR, Cavalli-Sforza LL, Feldman M. An evaluation of genetic distances for use with microsatellite loci.
Genetics 1995; 139:463-471.
28. Goldstein DB, Schlotterer C. Microsatellites: Evolution and Applications, Oxford University Press, Oxford 1999; 368.
ISSN: 2277-8713
IJPRBS
29. Goodfellow PN. Variation is now the
theme. Nature 1992; 359:777-778.
30. Hancock JM. Simple sequences and the expanding genome. Bioessays 1996; 18:421¬425.
31. Hancock JM. Microsatellites and other simple sequences: genomic context and mutational mechanisms. In:Microsatellites:Evolution and Applications (eds Goldstein DB, Schlstterer
C) 1999; 1-9.
32. Hoffman JI & Amos W. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Molecular Ecology 2005;
14(2):599-612.
33. Bravo JP, Hoshino AA, Angelici CMLCD, Barbosa AVG, Lopes CR & Gimenes MA. Heterologous microsatellite primer pairs informative for the whole genus Arachis. Genetics and Molecular Biology 2006;
29(4):665-675.
34. Ito T, Smith CL & Cantor CR. Sequence-specific DNA purification by triplex affinity capture. Proceedings of the National Academy of Sciences 1992; 89(2):495-498.
35. Jakupciak JP, Wells RD. Gene conversion (recombination) mediates expansions of CTG.CAG repeats. Journal of Biological
Chemistry 2000; 275:4003 - 4013.
36. Jarne P, Lagoda PJL. Microsatellites, from molecules to populations and back.
Trends Ecol Evol. 1996; 11:424-429.
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
37. Jeffreys AJ, Wilson V, Thein SL.
Hypervariable minisatellite regions in
human DNA. Nature 1985; 317:67-73.
38. Joshi SP, Gupta VS, Aggarwal RK, Ranjekar PK, Brar DS. Genetic diversity and phylogenetic relationship as revealed by Inter simple sequence repeat polymorphism in the genus Oryza. Theor.Appl. Genet.
2000; 100:1311-1320.
39. Kandpal RP, Kandpal G & Weissman SM. Construction of libraries enriched for sequence repeats and jumping clones, and hybridization selection for region- specific markers. Proceedings of the National Academy of Sciences 1994; 91:88-92.
40. Kashi Y, King D & Soller M. Simple sequence repeats as a source of quantitative genetic variation. Trends in
Genetics 1997; 13(2):74-78.
41. Kashi Y, King DG. Simple sequence repeats as advantageous mutators in evolution. Trends in Genetics 2006; 22:253¬259.
42. Katti MV, Ranjekar PK & Gupta VS.
Differential distribution of simple sequence repeats in eukaryotic genome sequences. Molecular Biology Evolution 2001;
18(7):1161-1167.
43. Kumar P, Gupta VK, Misra AK, Modi DR, Pandey BK. Potential of Molecular Markers in Plant Biotechnology. Plant Omics Journal
2009; 2(4):141-162.
44. Labate JA. Software for population genetic analyses of molecular marker data.
Crop Science 2000; 40(6):1521-1528.
45. Lawson MJ & Zhang L. Distinct patterns of SSR distribution in the Ara- bidopsis thaliana and rice genomes. Genome Biology
2006; 7: R14.
46. Levinson G, Gutman GA. Slipped-strand mis-pairing: a major mechanism of DNA sequence evolution. Mol Biol Evol. 1987;
4:203-221.
47. Mackill DJ, Zhang Z, Redona ED, Colowit PM. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome
1996; 39:969-977.
48. Malausa T, Gilles A, Meglecz E, Blanquart H, Dutho S, Costedoa C, Dubut V, Pech N, Castagnone-Sereno P, Delye C, Feau N, Frey P, Gauthier P, Guillemaud T, Hazard L, Le Corre V, Lung-Escarmant B, Male P-J G, Ferreira S & Martin JF. High-throughput microsatellite isolation through 454 GS-FLX Titanium pyrosequencing of enriched DNA libraries. Molecular Ecology Resources
2011; 11(4): 638-644.
49. Miesfeld R, Krystal M, Arnheim N. A member of a new repeated sequence family which is conserved throughout the eukaryotic evolution is found between the human globin genes. Nucleic Acids Research
1981; 9:5931-5947.
50. Mikheyev AS, Vo T, Wee B, Singer MC & Parmesan C. Rapid Microsatellite Isolation from a Butterfly by De Novo Transcriptome
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
Sequencing: Performance and a Comparison with AFLP-Derived Distances.
PLoS ONE 2010; 5(6):e11212.
51. Mittal N & Dubey AK. Microsatellite
markers - A new practice of DNA based markers in molecular genetics. Pharmacognosy Reviews 2009; 3(6):235-
246.
52. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes.
Nature Genetics 2002; 30:194-200.
53. Mullis K & Faloona F. Specific synthesis of DNA in vitro via a polymerase catalyzed chain reaction. Methods in Enzymology
1987; 155: 335-350.
54. Murray V, Monchawin C, England PR. The determination of the sequences present in the shadow bands of a dinucleotide repeat PCR. Nucleic Acids
Research 1993; 21:2395-2398.
55. Nadir E, Margalit H, Gallily T, Ben-Sasson SA. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proceedings of the National Academy of Sciences USA
1996;93:6470-6475.
56. Orsini L, Huttunen S & Schlotterer C. A multilocus microsatellite phylogeny of the Drosophila virilis group. Heredity 2004;
93(2):161-165.
57. Paetkau D. Microsatellites obtained using strand extension: an enriched
protocol. BioTechniques 1999; 26(4):690-697.
58. Palstra FP, O'Connell MF & Ruzzante DE. Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Molecular Ecology 2007; 16:4504¬4522.
59. Paran I, Michelmore RW. Development of reliable PCR based markers to downy mildew resistance genes in Lettuce. Theor. Appl.Genet 1993; 85:985-993.
60. Peakall R, Gilmore S, Keys W, Morgante M & Rafalski A. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the genus and other legume genera: implications for the transferability of SSRs in plants. Molecular Biology and Evolution 1998; 15:1275-1287.
61. Pearson CE, Nichol Edamura K, Cleary JD. Repeat instability: mechanisms of dynamic mutations. Nature Reviews
Genetics 2005; 6:729-742
62. Pepin L, Amigues Y, Lepingle A, Berthier JL, Bensaid A & Vaiman D. Sequence conservation of microsatellites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 1995; 74:53-61.
63. Perez de Rosas AR, Segura EL & Garcia BA. Microsatellite analysis of genetic structure in natural Triatoma infestans
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
(Hemiptera: Reduviidae) populations from Argentina: its implication in assessing the effectiveness of Chagas' disease vector control program 2007.
64. Pompanon F, Bonin A, Bellemain E & Taberlet P. Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics 2005; 6:847-846.
65. Powell W, Machray GC & Provan J. Polymorphism revealed by simple sequence repeats. Trends in Plant Science 1996;
1:215-222.
66. Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV & Rafalski JA. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Current Biology 1995;
5:1023-1029.
67. Powell W, Morgante M, Andre C, McNicol JW, Machray GC, Doyle JJ, Tingey SV & Rafalski JA. Hypervariable microsatellites provide a general source of polymorphic DNA markers for the chloroplast genome. Current Biology 1995;
5:1023-1029.
68. Primmer CR, Koskinen MT & Piironen J. The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proceedings of the Royal Society of London
2000; 267:1699-1704.
69. Rajendrakumar P, Biswal AK, Balachandran SM, Srinivasarao K, Sundaram
RM. Simple sequence repeats in organellar genomes of rice:frequency and distribution in genic and intergenic regions. Bioinformatics 2007; 23:1-4.
70. Richard GF, Paques F. Mini- and microsatellite expansions: the recom¬bination connection. EMBO Reports 2000;
1:122-126.
71. Rico C, Rico I & Hewitt G. 470 million years of conservation of microsatellite loci among fish species. Proceedings Biological
Sciences 1996; 263:549-557.
72. Rout P, Joshi M, Mandal A, Laloe D, Singh L & Thangaraj K. Microsatellite-based phylogeny of Indian domestic goats. BMC Genetics 2008; 9:11.
73. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, Arnheim N. Science
1985; 230:1350-1354.
74. Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M & Wingfield B. Microsatellite discovery by deep sequencing of enriched genomic 2009.
75. Schlotterer C & Tautz D. Slippage synthesis of simple sequence DNA. Nucleic
Acids Research 1992; 20:211-215.
76. Selkoe KA & Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology
Letters 2006; 9:615-629.
77. Semagn K, Bjornstad A, Ndjiondjop MN. An overview of molecular marker methods
for plants 2006; 25:2540-2568.
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
78. Smith DN, Devey ME. Occurrence and inheritance of microsatellites in Pinus radiata. Genome 1994; 37:977-983.
79. Soranzo N, Provan J & Powell W. An example of microsatellite length variation in the mitochondrial genome of conifers.
Genome 1999; 42:158-161.
80. Spritz RA. Duplication/deletion polymorphism 5' - to the human beta globin gene. Nucleic Acids Research 1981; 9:5037¬5047.
81. Streisinger G, Owen J. Mechanisms of spontaneous and induced frame- shift mutation in bacteriophage T4. Genetics
1985; 109:633-659
82. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids
Research 17:6463-6471.
83. Tautz D, Renz M 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research 1989; 12:4127-4138.
84. Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Research 2001; 11:1441-1452.
85. Thomas CM, Vos P, Zabeau M, Jones DA, Norcottet K.A. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked
to the tomato Cf-9 gene for resistance to Cladosporium fluvum. Plant J. 8:785-794.
86. Thoren PA, Paxton RJ, Estoup A. Unusually high frequency of (CT)n and (GT)n microsatellite loci in a yellow jacket wasp, Vespula rufa (L.) (Hymenoptera:Vespidae). Insect Molecular Biology 1995; 4:141-148.
87. Tingey SV, Deltufo JP. Genetic analysis with Random Amplified Polymorphic DNA. Plant Physiol. 1993; 101:349-352.
88. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic gen¬omes: survey and analysis. Genome
Research 2000; 10:967-981.
89. Van Oppen MJ, Rico C, Turner GF, Hewitt GM. Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi cichlids. Molecular Biology and Evolution
2000;17:489-498.
90. Varshney RK, Graner A & Sorrels ME. Genetic microsatellite markers in plants: features and applications. Trends in Biotechnology 2005;23:48-55.
91. Vaughan V, Lloyd AM. An analysis of microsatellite loci in Arabidopsis thaliana: mutational dynamics and application.
Genetics 2003; 165:1475-1488.
92. Vieux EF, Kwok PY, Miller RD. Primer design for PCR and sequencing in high-throughput analysis of SNPs. Biotechniques
2002; 32:28-30.
Available Online at www.ijprbs.com
Review Article CODEN: IJPRNK
Sarika Saxena, IJPRBS, 2013; Volume 2(4): 385-409
ISSN: 2277-8713
IJPRBS
93. Vos P, Hogers R, Bleeker M, Reijans M, van, de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: A new technique for DNA fingerprinting.
Nucleic Acids Res. 1995; 23:4407-4414.
94. Vosman B, Arens P, Rus-Kortekaas W, Smulders JM. Identification of highly polymorphic DNA regions in tomato. Theor.
Appl.Genet. 1992; 85:239-244.
95. Wang M, Champion LE, Biessmann H, Mason JM. Mapping a mutator, mu2, this increases the frequency of terminal deletions in Drosophila melanogaster. Mol.
Gen. Genet. 1994; 245(5):598-607.
96. Wang ML, Barkley NA & Jenkins TM. Microsatellite Markers in Plants and Insects. Part I: Applications of Biotechnology. Genes, Genomes and Genomics, 2009;
3(a):54-67.
97. Wang ML, Mosjidis JA, Morris JB, Chen ZB, Barkley NA, Pederson GA. Evaluation of Lespedeza germplasm genetic diversity and its phylogenetic relationship with the genus Kummerowia. Conservation Genetics
2009b;10:79-85.
98. Weising K, Nybom H, Wolff K & Kahl G.
DNA Fingerprinting in Plants: Principles,
Methods and Applications, CRC Press, ISBN 0-8493-1488-7, Boca Raton, United States 2005.
99. Williams JGK, Kubelik AR, Livak KJ,
Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990;
18:6531-6535.
100. Yue GH, Zhu ZY, Wang CM& Xia JH. A simple and efficient method for isolating polymorphic microsatellites from cDNA. BMC Genomics 2009; 10:125.
101. Zane L, Bargelloni L & Patarnello T. Strategies for microsatellite isolation: a review. Molecular Ecology 2002; 11:1-16.
102. Zhao H, Yu J, You FM, Luo M & Peng J. Transferability of Microsatellite Markers from Brachypodium distachyon to Miscanthus sinensis, a Potential Biomass Crop. Journal of Integrative Plant Biology
2011; 53:232-245.
103. Zhu J, Gale, MD, Quarrie S, Jackson MT, Bryan GJ. AFLP markers for the study of rice biodiversity. Theor. Appl. Genet. 1998;
96:602-611.

Thank you for copying data from http://www.arastirmax.com