Buradasınız

K-MEANS, K-MEDOIDS VE BULANIK C-MEANS ALGORİTMALARININ UYGULAMALI OLARAK PERFORMANSLARININ TESPİTİ

APPLIED PERFORMANCE DETERMINATION OF K-MEANS, K-MEDOIDS AND FUZZY C-MEANS ALGORITHMS

Journal Name:

Publication Year:

Author NameUniversity of AuthorFaculty of Author
Abstract (2. Language): 
Partition based clustering algorithms divideobjects to the clusters according to the given input parameter. Partition based clustering algorithms are succesful to find center based clusters. In this study, partition based clustering algorithms such as k-means, k-medoids and fuzzy c-means algorithms are compared according to their clustering abilities and performances. Syntetic data sets existingin literature are used in the experiments.
Abstract (Original Language): 
Kümeleme algoritmalarından bölünmeli kümeleme tekniği, nesneleri giriş parametre sayısıkadar kümeye bölmektedir. Bölünmeli kümeleme algoritmaları, merkez tabanlı kümeleri tespit etmede başarılıdır. Bu çalışmada, başlıca bölünmeli kümeleme algoritmalarından k-means, k-medoids ve bulanık c-means algoritmalarının kümeleme yetenekleri ve performansları karşılaştırılmıştır. Literatürde yer alan sentetik veri setleri kullanılmıştır.
31-45

REFERENCES

References: 

Han,J.,and Kamber,M., (2006), Data Mining Concepts and Techniques, Morgan
Kauffmann Publishers Inc.
Höppner, F., Klawonn, F., Kruse, R., and Runkler, T., (2000), Fuzzy Cluster
Analysis, John Wiley&Sons, Chichester.
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar2007/1
45
Jain,A. K., Murty,M. N.,andFlynn,P. J., (1999), “Data Clustering: A Review”,
ACM Computing Surveys, 31, 3.
Kaufman, L.,andRousseeuw,P.J., (1987), Clustering by Means of Medoids,”
Statistical Data Analysis Based on The L1–Norm and Related Methods, edited by Y.
Dodge, North-Holland, 405–416.
Kaufman,L.,andRousseeuw,P. J., (1990), Finding Groups in Data: An
Introduction to Cluster Analysis, John Wiley and Sons.
Lindahl, T.,and Gustaffson,P., “Sentetik Veri Seti, Küçük Şekillerve Örüntülerin
Kaynağı”, http://user.it.uu.se/~kostis/Teaching/DM/Assignments/(Erişim Tarihi:
Mayıs 2005)
MacQueen, J. B., (1967), MacQueen, Some Methods for Classification and Analysis
of Multivariate Observations,Proc. Symp. Math. Statist. and Probability (5th), 281–
297.
Moertini,V.S., (2002), “Introduction to Five Clustering Algorithms”, Integral, 7, 2.
Pang-Ning Tan, P. N., Steinbach,M.,andKumar, V., (2006), Introduction to Data
Mining, Addison Wesley .
Salem,S. A.,andNandi,A. K., (2005),“New Assessment Criteria for Clustering
Algorithms”, Proceedings of the IEEE International Workshop on Machine Learning
for Signal Processing (MLSP-2005), Mystic, CT, USA, 285-290.
Teknomo, K., http://people.revoledu.com/kardi/tutorial/kMean/,(Erişim Tarihi:
Eylül 2005)
Xu,R.,andWunsch,II. D., (2005), “Survey of Clustering Algorithms”, IEEE
Transactions On Neural Networks, 16, 3.
Zaïane, O., andPei, Y., Sentetik Veri Seti Documents_Sim, Mars ve Image
Extraction’ın kaynağı: http://www.cs.ualberta.ca/~yaling/Cluster/Applet/Code/
Cluster.html(Erişim Tarihi: Eylül 2005).

Thank you for copying data from http://www.arastirmax.com