Buradasınız

GERİ DÖNÜŞÜM TESİSLERİNİN YERİNİN GUSTAFSON-KESSEL ALGORİTMASI-KONVEKS PROGRAMLAMA MELEZ MODELİ TABANLI SİMÜLASYON İLE BELİRLENMESİ

DETERMINING LOCATION OF RECYCLING PLANTS WITH GUSTAFSON-KESSEL ALGORITHM-CONVEX PROGRAMMING HYBRID MODEL-BASED SIMULATION

Journal Name:

Publication Year:

Abstract (2. Language): 
Istanbul is a metropolis that needs more and more resources with each passing day by its continuousl y increasing population and its expanding geographic structure. For purpose of inhibiting desctruction of the naturel equilibrium, decreasing the damage on environment and achieving energy savings by reusi ng recycling materials, companies take some radical actions on recycling processes. As a term, recycli ng means that reusing recyclable waste materials as raw materials in manufacturing with varied recycling methods. In this article, firstly optimum facility locations which are related to capacity, cost, demand and geographical position constraints were determined with Gustafson-Kessel fuzzy clustering algorithm-convex programming hybrid modelfor the new asphalt recycling facilities that belong to an asphalt company and then with this/these locations, systems’ parameters like logistics performance, costs, bottlenecks and machine /tool requirements etc. were analysed with a simulation application
Abstract (Original Language): 
İstanbul giderek artan nüfusu ve genişleyen coğrafi yapısıyla her geçen gün daha fazla kaynağa gereksinim duyan bir metropoldur. Artan tüketimin doğal dengeyi bozmasını engellemek ve doğaya verilen zararı azaltmak, ayrıca yeniden dönüştürülebilen maddelerin tekrar hammadde olarak kullanılmasıyla büyük miktarda enerjitasarrufu sağlamak amacıyla firmalar geri dönüşüm süreçlerine başvurmaktadır. Geri dönüşümterim olarak, kullanım dışı kalan geri dönüştürülebiliratık malzemelerin çeşitli geri dönüşüm yöntemleri ile hammaddeolarak tekrar imalatsüreçlerine kazandırılmasıdır. Bu makalede bir asfalt firmasının kurulacak geri dönüşüm tesisleri için kapasite, maliyet, talep ve coğrafi konum kısıtlarına bağlı olarak öncelikle optimum yerle, Gustafson-Kessel bulanık öbekleme algoritması-Konveks programlama melez modeli ile belirlenmiş , daha sonra da belirlenen yer veya yerlere bağlı olarak çeşitlikoşullar altında gerçek sisteme ait lojistik performansı, maliyet, darboğaz noktaları ve makine/araç gereksinimi gibi parametreler bir simülasyon uygulaması ile incelenmiştir.
1-20

REFERENCES

References: 

Aras, N. ve Asken, D.,(2008), “Locating Collection Centers for Distance-and
Incentive-dependent Returns”, International Journal of Production Economics,111,
316-333.
Babuska R., Van Der Veen P.J. veKaymak U., (2002), ”Improved Covariance
Estimation for Gustafson Kessel Clustering”,In Proceedings of the IEEE
International Conference on Fuzzy Systems, 1081-1085, Honolulu, Hawaii.
Balasko B., Abonyi J. veFeil B., (2005), “Fuzzy Clustering and Data Analysis
Toolbox”Available :http://www.fmt.vein.hu/softcomp/fclusttoolbox.
Avrupa Yakası
İki AraDepolu
Model
Asya Yakası
Bir Ara Depolu
Model
Toplam Kazı
Maliyeti
3.308.310 YTL 2.369.070 YTL
Toplam Yama
Maliyeti
3.036.690 YTL 2.825.550 YTL
Toplam
Maliyet
6.345.000 YTL 5.194.620 YTL
Birim Kazı
Maliyeti
9 YTL/Ton 8,985 YTL/Ton
Birim Yama
Maliyeti
51,75 YTL/Ton 51,75 YTL/Ton
İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi Bahar2008/1
19
Barros A.I., Dekker R. ve Scholten V.A., (1998), “A Two Level Network for
Recycling Sand: A Case Study”, European Journal of Operational Research,110,
199–214.
Bezdek, J.C. veDunn, J.C., (1975),“Optimal Fuzzy Partitions: A Heuristic for
Estimating the Parameters in a Mixture of Normal Distributions”, IEEE
Transactions on Computers,835-838
Büyüksaatçı, S., Küçükdeniz, T., Esnaf, Ş., (2008), “Asfalt Geri Dönüşüm
Tesislerinin Optimum Yer ve Kapasitelerinin Belirlenmesi için Bulanık Öbekleme
Esaslı Simülasyon Uygulaması”, VIII. Ulusal Üretim Araştırmaları Sempozyumu,
Bildiriler Kitabı,237-247,24-24 Ekim, İstanbul.
Can, T., Çilingirtürk, M. ve Koçak, H.,(2006), “Dışbükey Programlama ile Lojistik
Merkezi Tespiti”, İstanbul Üniversitesi İşletme İktisadı Enstitüsü Yönetim Dergisi,
54, 17-25
Döring C., Lesot M. ve Kruse R. (2006), “Data Analysis with Fuzzy Clustering
Methods”, Computational Statistics and Data Analysis, 51, 192-214.
Esnaf, Ş. veKüçükdeniz, T., (2006), “A Fuzzy Clustering-Based Hybrid Method
for a Multi-Facility Location Problem, In Proceedings of International Symposium
on Intelligent and Manufacturing Systems, May 29-31,Sakarya, 304-317.
Esnaf, Ş. veKüçükdeniz, T., (2009), “A Fuzzy Clustering-Based Hybrid Method
for a Multi-Facility Location Problem, Journal of Intelligent Manufacturing,
published online 24 January 2009. DOI:10.1007/s10845-008-0233-y.
Available:http://www.springerlink.com/content/646p270204338411/
Esnaf, Ş.,Küçükdeniz, T. ve Büyüksaatçı, S., (2008), “Fuzzy C-Means and Center
of Gravity Combined Model for a Capacitated Planar Multiple Facility Location
Problem”, International Conference on Multivariate Statistical Modelling andHigh
Dimensional Data Mining,Kayseri
Figueiredo, J. N. ve Mayerle, S.F., (2007), “ Designing Minimum-cost Recycling
Collection Networks with Required Throughput”, Transportation Research Part E
Flahaut, B.,Laurent, M.A. veThomas, I., (2002), “Locating a Community
Recycling Center within a Residential Area: A Belgian Case Study”, The
Professional Geographer, 54, 1.
Gomes, H., Lobo, V. ve Ribeiro, A. B., (2004), “Application of Clustering Methods
for Optimizing the Location of Treated WoodRemediation Units”, I Jornadas de
Classificação e Análise de Dados.
Sinem BÜYÜKSAATÇI, Tarık KÜÇÜKDENİZ, Şakir ESNAF
20
Gomes, H., Ribeiro, A. B. ve Lobo, V., (2007), “Locating Model for CCA-treated
Wood Waste Remediation Units using GIS and Clustering Methods”, Environmental
Modelling and Software, 22, 1788-1795.
Gustafson,D.E.ve Kessel,W.C.,(1979),“Fuzzy Clustering with Fuzzy Covariance
Matrix”, In Proceedings of the IEEE CDC, San Diego, 761-766.
Kara, S., Rugrungruang, F. ve Kaebernick, H., (2007), “Simulation Modelling of
Reverse Logistics Networks”, International Journal of Production Economics, 106,
61-69.
Kenesei T., Balasko B. veAbony J.,(2006), “A MATLAB Toolbox and its Web
Based Variant for Fuzzy Cluster Analysis”, In Proceedings of the 7
th
International
Symposium on Hungarian Researchers on Computational Intelligence, November
24-25, Budapest, Hungary.
Louwers, D., Kip, B.J., Peters, E., Souren, F.ve Flapper, S.D.P.,(1999),“A Facility
Location Allocation Model for Reusing Carpet Material”, Computers and Industrial
Engineering, 36, 4, 855-869.
Lu Z., Bostel, N. ve Dejax, P., (2004), “The Simple Plant Location Problem with
Reverse Flows”, In: A. Dolgui, J. Soldek, O. Zaikin (edts.), Suply Chain
Optimization, 151-166, Kluwer Academic Publishers.
Min H., Ko, H.J.ve Ko, C.S., (2006), “A Genetic Algorithm Approach to
Developing the Multiechelon Reverse Logistics Network for Product Returns”,
Omega, 34, 56-69.
Realff, M.J., Ammons,J.C. ve Newton,D., (1999), “Carpet Recycling:Determining
the Reverse Production System Design”, Polymer-Plastics Technology and
Engineering, 38:3,547-567.
Wang, C.H., Even, J.C. veAdams, S.K., (1995), “A Mixed Integer Linear Model for
Optimal Processing and Transport of Secondary Materials”, Resources,
Conservation and Recycling, 15, 65-78.

Thank you for copying data from http://www.arastirmax.com