Buradasınız

ZIRKONYANIN MIKROYAPILARINA VE ÜRETİM ŞEKİLLERİNE GÖRE SINIFLANDIRILMASI

FABRICATION TECHNIQUES AND MICROSTRUCTURE CLASSIFICATIONS OF ZIRCONIA

Journal Name:

Publication Year:

Keywords (Original Language):

Abstract (2. Language): 
Zirconia; with several advantages over other ceramic materials, due to the transformation toughening mechanisms, has been recently introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures, in combination with CAD/CAM techniques. This review encompasses the specific types of zirconia available in dentistry, together with their properties. The two main processing techniques, soft and hard machining, are assessed in the light of their possible clinical implications and consequences on the long-term performance of zirconia.
Abstract (Original Language): 
Zirkonya, eşsiz faz değişimi özelliğine bağlı olarak kazandığı mekanik özellikleri sayesinde CAD/CAM tekniklerinin de gelişmesiyle birlikte son senelerde diş hekimliği protetik restorasyonlarında kullanımı oldukça yaygınlaşmıştır. Bu derleme piyasadaki zirkonya materyallerini özellikleriyle birlikte mikroyapılarına göre sınıflandırmıştır. Zirkoyanın işlenmesi sırasında kullanılan kazıma yöntemleri ise mikroyapıyı ve mekanik özellikleriyle birlikte uzun dönem başarısını etkilemektedir.
197
204

REFERENCES

References: 

1. Hisbergues .M, Vendeville S, Vendeville P. Zirconia: Established Facts and Perspectives for a Biomaterial in Dental Implantology. J Biomed Mater Res Part B: Appl Biomater, 2009; 88 (B): 519-529.
2. Piconi C, Maccauro G. Zirconia as a ceramic biomaterial. Dent Mater, 1999; 20: 1-25.
3. Piconi C, Burger W, Richter H G, Cittadini A, Maccauro G, Covacci V, Bruzzese N, Ricci G A, Marmo E. Y-TZP ceramics for arti&cial joint replacements. Dent Mater, 1998; 19: 1489¬1494.
4. Denry I ,Kelly R. State of the art of zirconia for dental applications. Dent Mater, 2008; 24: 299¬307.
5. Helmer JD, Driskell TD. Research on bioceramics. Symp. On Use of Ceramics as Surgical Implants. South Carolina (USA): Clemson University, 1969.
6. Christel P, Meunier A, Dorlot J-M et al. Biomechanical compatibility and design of ceramic implants for orthopaedic surgery. Bioceramics: material charateristics versus in vivo behavior. Ann NY Acad Sci, 1988; 523: 234-56.
7. Rieth PH, Reed JS, Naumann AW. Fabrication and flexural strength of ultra-fine grained yttria-stabilised zirconia. Bull AmCeram Soc, 1976;
55: 717.
8. Gupta TK, Bechtold JH, Kuznickie RC, Cadon LH, Rossing BR. Stabilization of tetragonal phase in polycrystalline zirconia. J Mater Sci,
1978; 13: 1464.
9. Chevalier J. What future for zirconia as a biomaterial? Biomaterials, 2006; 27: 535-43.
10. Green D, Hannink R, Swain M. Transformation toughening of ceramics. Boca Raton, FL: CRC
Press, 1988.
11. Burger W, Richter HG, Piconi C, Vatteroni R, Cittadini A, Boccalari M. New Y-TZP powders for medical grade zirconia. J Mater Sci Mater
Med, 1997; 8: 113-8.
12. Ruiz L, Readey MJ. Effect of heat-treatment on grain size, phase assemblage, and mechanical properties of 3mol% Y-TZP. J Am Ceram Soc, 1996; 79: 2331-40.
13. Scott HG. Phase relationships in the zirconia-
yttria system. J Mater Sci, 1975; 10: 1527-35.
14. Chevalier J, Deville S, Mu" nch E, Jullian R, Lair F. Critical effect of cubic phase on aging in 3mol% yttria-stabilized zirconia ceramics for hip replacement prosthesis. Biomaterials, 2004;
25: 5539-45.
15. Subbarao EC. Zirconia-an overview. In: Heuer AH, Hobbs LW, editors. Science and technology of zirconia. Columbus, OH: The American Ceramic Society, 1981; 1-24.
16. Guazzato M, Albakry M, Quach L, Swain MV. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic.
Dent Mater, 2005; 21: 454-63.
17. Deville S, Chevalier J, Fantozzi G, Bartolome J, Requena J, Moya J, et al. Low-temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. J
Eur Ceram Soc, 2003; 23: 2975-82.
18. Fantozzi G, Chevalier J, Guilhot B. Processing microstructure and thermomechanical behavior of ceramics. Adv Eng Mater, 2001; 3: 563-9.
19. Tanaka K, Tamura J, Kawanabe K, Nawa M,
Oka M, Uchida M, ve ark. Ce-TZP/Al2O3
nanocomposite as a bearing material in total joint replacement. J Biomed Mater Res, 2002;
63: 262-70.
20. Filser FT. Direct ceramic machining of dental restorations. Ph.D. thesis. Zurich: Swiss Federal Institute of Technology Zurich; 2001.
21. Cales B. Colored zirconia ceramics for dental applications. In: LeGeros RZ, Legeros JP, editors. Bioceramics. New York: World Scientific Publishing Co. Pte. Ltd.; 1998.
204
Bultan Ö., Öngül D., Türkoğlu P.
22. Blue DS, Griggs JA, Woody RD, Miller BH.
Effects of bur abrasive particle size and abutment composition on preparation of ceramic implant abutments. J Prosthet Dent,
2003; 90: 247-54.
23. Yin L, Huang H. Ceramic response to high speed grinding. Mach Sci Technol, 2004; 8: 21¬37.
24. Yin L, Jahanmir S, Ives LK. Abrasive machining of porcelain and zirconia with a
dental handpiece. 2003; 255: 975-89.
25. Kosmac T, Oblak C, Jevnikar P, Funduk N,
Marion L. The effect of surface grinding and
sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater, 1999;
15: 426-33.
26. Guazzato M, Albakry M, Quach L, Swain MV. Influence of surface and heat treatments on the flexural strength of a glass-infiltrated alumina/zirconia-reinforced dental ceramic.
Dent Mater, 2005; 21: 454-63.
27. Curtis AR, Wright AJ, Fleming GJP. The influence of surface modification techniques on the performance of a Y-TZP dental ceramic. J
Dent, 2006; 34: 195-206.

Thank you for copying data from http://www.arastirmax.com