Buradasınız

PORTFOLIO SELECTION WITH HIGHER MOMENTS: A POLYNOMIAL GOAL PROGRAMMING APPROACH TO ISE–30 INDEX

Journal Name:

Publication Year:

Abstract (2. Language): 
The aim of this paper is to propose a portfolio selection model which takes into account the investors preferences for higher return moments such as skewness and kurtosis. In the presence of skewness and kurtosis, the portfolio selection problem can be characterized with multiple conflicting and competing objective functions such as maximizing expected return and skewness, and minimizing risk and kurtosis, simultaneously. By constructing polynomial goal programming, in which investor preferences for skewness and kurtosis incorporated, a Turkish Stock Market example will be presented for the period from January 2005 to December 2010.
Abstract (Original Language): 
Bu makalenin amacı, çarpıklık ve basıklık gibi yüksek getiri momentleri için yatırımcının tercihlerini göz önüne alan bir portföy seçimi modeli önermektir. Çarpıklık ve basıklığın varlığında, portföy seçimi problemi, eş zamanlı olarak beklenen getiri ve çarpıklığın maksimizasyonu ile risk ve basıklığın minimize edilmesi gibi birbiri ile çelişen ve rekabet eden amaç fonksiyonları ile karakterize edilir. Polinomsal hedef programlama oluşturarak, Ocak 2005-Aralık 2010 periyodu için Türk Borsası’nda bir örnek sunulacaktır.
41-61

JEL Codes:

REFERENCES

References: 

A. J. Prakash, C. H. Chang and T. E. Pactwa. 2003. Selecting a portfolio with
skewness: Recent evidence from US, European, and Latin American equity markets. Journal
of Banking and Finance 27: 1111-1121.
Arditti, F. D. 1971. Another Look at Mutual Fund Performance. Journal of Financial
and Quantitative Analysis 6:909-912.
Arditti, F. D. and Levy, H. 1975. Portfolio Efficiency Analysis in Three Moments:
The Multi-period Case. Journal of Finance 30:797-809.
Athayde, G. and Flores, R. 2004. Finding a Maximum Skewness Portfolio: A General
Solution to Three-Moments Portfolio Choice. Journal of Economic Dynamics&Control 28:
1335-1352.
Chang, T. J., Meade, N., Beasley, J. E. and Sharaiha, Y. M. 2000. Heuristics for
Cardinality Constrained Portfolio Optimisation. Computers&Operations Research 27:1271-
1302.
Chunhachinda, P., Dandapani, K., Hamid, S. and Prakash A. J. 1997. Portfolio
Selecion and Skewness: Evidence from International Stock Market. Journal of Banking and
Finance 21:143-167.
Davies, R. J., Kat, H. M. and Lu, S. 2009. Fund of Hedge Funds Portfolio Selection: A
Multiple-Objective Approach. Journal of Derivatives and Hedge Funds. 15:2:91-115
Elton, E. J. and Martin, J. G. 1997. Modern Portfolio Theory, 1950 to date. Journal of
Banking&Finance 21:1743-1759.
Fama, E. F.1965. The Behaviour of Stock Market Prices. Journal of Business 38:34-
105.
Haas, M. 2007. Do Investors Dıslike Kurtosis?. Economics Bulletin 7:1-9.
Harvey C. R. and Siddique A.. 1999. Autoregressive Conditional Skewness. Journal of
Finance :34:116-131.
Jurczenko, E. and Maillet, B. 2005-a. Theoretical Foundations of Asset Allocation and
Pricing Models with Higher-order Moments in Multi-moment Asset Allocation and Pricing
Models. John Wiley & Sons, New York.
Jurczenko, E. and Maillet, B. 2005-b. The Four-moment Capital Asset Pricing Model:
Between Asset Pricing and Asset Allocation. Springer-Verlag.
Jurczenko, E., Maillet, B. and Merlin, P. 2006. Hedge Funds Portfolio Selection with
Higher-order Moments: A Non-parametric Mean-Variance-Skewness-Kurtosis Efficient
Frontier in Multi-moment Asset Allocation and Pricing Models. Ed. by E. Jurczenko, B.
Maillet. Sussex, John Wiley.
Kane, A. 1982. Skewness Preference and Portfolio Choice. Journal of Financial and
Quantitative Analysis 17:15-25.
Kraus, A. and Litzenberger, R. 1976. Skewness Preference and the Valuation of Risk
Assets. Journal of Finance 31:1085-1094.
Konno, H.; Suzuki, K. 1995. A Mean-Variance-Skewness Portfolio Optimization
Model. Journal of the Operations Research Society of Japan 38: 173–187.
Lai, T-Y. 1991. Portfolio Selection with Skewness: A Multiple-Objective Approach.
Review of Quantitative Finance and Accounting 1:293-305.
Lai, K. K., Yu, L. and Wang, S. 2006. Mean-Variance-Skewness-Kurtosis-based
Portfolio Optimization. Proceedings of the First International Multi-Symposiums on
Computer and Computational Sciences 2:292-297
Levy, H. and Sarnat, M. 1972 Investment and Portfolio Analysis. John Wiley&Sons,
Inc, New York.
Maillet, B. B. 2007. Absolute and Asymmetric Robust Asset Allocations by Extension
of the CAPM. Presentation for the 5th Europlace Institute of Finance International Meeting,
Paris.
Mandelbrot, B. 1963. The Variation of Certain Speculative Prices Journal of Business
36(4): 394-419.
Markowitz, H. 1952. Portfolio Selection. Journal of Finance 8:77-91.
Markowitz, H. 1959. Portfolio Selection Efficient Diversification of Investments. John
Wiley&Sons, Inc, New York.
Mhiri, M. and Prigent, J. L. 2010. International Portfolio Optimization with Higher
Moments 2:5.
Peiro, Amado. 1999. Skewness in Financial Returns. Journal of Banking and Finance
23: 847-862.
Prakash, A.; Chang, C. H. Pactwa, E. 2003. Selecting a Portfolio with Skewness:
recent Evidence from US, European, and Latin America Equity Markets. Journal of Banking
and Finance 27:1375–1390.
Premaratne, G. and Bera, K. A. 2000. Modeling Asymmetry and Excess Kurtosis in
Stock Return Data. Illinois Research & Reference Working Paper No. 00-123.
Rubinstein, M. 2002. Markowitz’s Portfolio Selection: A Fifty-Year Retrospective, The
Journal of Finance 57:1041-1045.
Samuelson, P. 1970. The Fundamental Approximation of Theorem of Portfolio
Analysis in terms of Means, Variances and Higher Moments, Review of Economic Studies
37:537-542.
Scott, R. C. and Horvath, P. A. 1980. On the Direction of Preference for Moments of
Higher Order than the Variance. The Journal of Finance 35:915-919.
Tayi, G. and Leonard, P. 1988. Bank Balance-Sheet Management: An Alternative
Multi-Objective Model, Journal of the Operational Research Society 39: 401-410.
Taylan, S. A. and Tatlıdil, H. 2010. International Conference 24th Mini EURO
Conference Continuous Optimization and Information-Based Technologies in the Financial
Sector, Izmir, Turkey.
Qi-fa Xu, Cui-xia, J. and Pu, K. 2007. Dynamic Portfolio Selection with Higher
Moments Risk Based on Polynomial Goal Programming. International Conference on
Management Science & Engineering, Harbin, P.R. China.
Wang, S. ve Xia, Y. 2002. Portfolio Selection and Asset Pricing”, Springer-Verlag,
Berlin.
Yu, L., Wang, S. and Lai, K. K. 2008. Neural Network-Based Mean-VarianceSkewness Model for Portfolio Selection”, Computers&Operations Research 35:34-46.

Thank you for copying data from http://www.arastirmax.com